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Abstract. The convergence region of a Three Step Method (TSM) with a
parameter of convergence order six for solving Banach space valued equa-
tions is extended by using conditions only on the first derivative and our
idea of the restricted region.

1. Introduction

Let B1, B2 denote Banach spaces, Ω ⊆ B1 be convex and open. We are
concerned with the problem of finding a locally unique solution x∗ of equation

(1.1) F (x) = 0,

where F : Ω −→ B2 is continuously Fréchet differentiable according to Fréchet.
Solving (1.1) is of extreme importance, since many applications reduce to solv-
ing (1.1). We resort to iterative methods through which a sequence is generated
converging to x∗ under certain conditions on the initial data [1]–[16]. We study
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the local convergence of the three-step method defined for x0 ∈ Ω and all
n = 0, 1, 2, . . . by

yn = xn − αF ′(xn)
−1F (xn),

zn = xn − αF ′(yn)
−1F (xn),

xn+1 = zn −MnF (zn),

(1.2)

α ∈ R or α ∈ C,Mn = 2F ′(yn)
−1 − F ′(xn)

−1 developed in [15], when X =
= Y = Ri. The order is six, if α = 1

2 . The local convergence of (1.2) has been
studied extensively under conditions on derivatives of F of order up to seven
[15]. The convergence domain is not large, the error estimates on ‖xn − x∗‖
pessimistic and the information concerning the uniqueness of the solution not
the best possible (in general). We address all these concerns and present a finer
local convergence for TSM without additional conditions.

2. Convergence

We define some real functions and constants to be used in the analysis that
follows. Set S = [0,∞).

Suppose that there exists continuous and nondecreasing function w0 : S →
→ S such that equation

(2.1) w0(s)− 1 = 0

has a least positive solution denoted by ρ. Set S0 = [0, ρ).

Suppose that there exist continuous and nondecreasing functions w : S0 →
→ S, w1 : S0 → S such that equation

(2.2) ϕ1(s) := g1(s)− 1 = 0

has a least solution ρ1 ∈ (0, ρ], where

g1(s) =

1∫
0

w((1− θ)s)dθ + |1− α|
1∫
0

w1(θs)dθ

1− w0(s)
.

Suppose equation

(2.3) w0(g1(s)s)− 1 = 0

has a least solution ρ2 ∈ (0, ρ]. Set ρ3 = min{ρ1, ρ2}.
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Suppose equation

(2.4) ϕ2(s) := g2(s)− 1 = 0

has a least solution ρ4 ∈ (0, ρ3), where

g0(s) =

1∫
0

w((1− θ)s)dθ

1− w0(s)

and

g2(s) = g0(s) +

(w0(s) + w0(g1(s)s))
1∫
0

w1(θs)dθ

(1− w0(s))(1− w0(g1(s)s))
.

Suppose equation

(2.5) w0(g2(s)s)− 1 = 0

has a least solution ρ5 ∈ (0, ρ3). Set ρ6 = min{ρ4, ρ5}.
Suppose equation

(2.6) ϕ3(s) := g3(s)− 1 = 0

has a least solution ρ∗ ∈ (0, ρ6), where

g3(s) = [g0(g2(s)s) +

(
w0(g2(s)s) + w0(g1(s)s)

(1− w0(g2(s)s))(1− w0(g1(s)s))
+

+
w0(g2(s)s) + w0(s)

(1− w0(s))(1− w0(g1(s)s))

) 1∫

0

w1(θg2(s)s)dθ]g2(s).

It follows from these definitions that for all s ∈ [0, ρ∗), i = 1, 2, 3

(2.7) 0 ≤ w0(s) < 1,

(2.8) 0 ≤ w0(g1(s)s) < 1,

(2.9) 0 ≤ w0(g2(s)s) < 1

and

(2.10) 0 ≤ ϕi(s) < 1.

We shall show that ρ∗ is a radius of convergence for (1.2).

Let U(v, a), Ū(v, a) stand for the open and closed balls in B1 with center
v ∈ B1 and of radius a > 0, respectively. Set U0 = Ω ∩ U(x∗, ρ). The following
conditions (A) shall be used:
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(a1) F : Ω → B2 is differentiable and there exists x∗ so that F
′(x∗) is invertible

and F (x∗) = 0.

(a2) There exist continuous and nondecreasing function w0 : S → S such that
for each x ∈ Ω

‖F ′(x∗)
−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖).

(a3) There exist continuous and nondecreasing functions w : S0 → S and
w1 : S0 → S such that for all x, y ∈ Ω0

‖F ′(x∗)
−1(F ′(y)− F ′(x))‖ ≤ w(‖y − x‖)

and
‖F ′(x∗)

−1F ′(x)‖ ≤ w1(‖x− x∗‖).

(a4) Ū(x∗, ρ∗) ⊂ Ω, where ρ∗ is defined previously.

(a5) There exists ρ̄ ≥ ρ∗ such that

1∫

0

w0(θρ̄)dθ < 1.

Set Ω1 = Ω ∩ Ū(x∗, ρ̄).

Next, the main local convergence result for (1.2) is provided using conditions
(A) and the developed notation.

Theorem 2.1. Suppose that the conditions (A) hold. Then, for x0 ∈ U(x∗, ρ∗)
sequence {xn} generated by (1.2) is well defined, stays in U(x∗, ρ∗) and
limn→∞ xn = x∗. Moreover, the following assertions hold for all n = 0, 1, 2, . . .
and en = ‖xn − x∗‖

(2.11) ‖yn − x∗‖ ≤ g1(en)en ≤ en < ρ∗,

(2.12) ‖zn − x∗‖ ≤ g2(en)en ≤ en

and

(2.13) en+1 ≤ g3(en)en ≤ en.

Furthermore, ρ∗ is the unique solution of equation F (x) = 0 in Ω1 given in
(a5).
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Proof. Let u ∈ U(x∗, ρ∗). By the definition of ρ∗, (a1) and (a2), we have

(2.14) ‖F ′(x∗)
−1(F ′(u)− F ′(x∗))‖ ≤ w0(‖u− x∗‖) ≤ w0(ρ∗) < 1,

so by a perturbation lemma due to Banach on inverses of operators [6] F ′(u)−1

exists with

(2.15) ‖F ′(u)−1F ′(x∗)‖ ≤ 1

1− w0(‖u− x∗‖)
.

In particular, for u = x0, y0 exists by the first substep of (1.2) (for n = 0).
Then, we can write

(2.16) y0 − x∗ = x0 − x∗ − F ‘(x0)
−1F (x0) + (1− α)F ′(x0)

−1F (x0),

so by (a3) and (2.15) for u = x0 :

‖y0 − x∗‖ ≤ ‖F ′(x0)
−1F ′(x∗)‖ ×

×‖
1∫

0

F ′(x∗)
−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ‖+

+|1− α|‖F ′(x0)
−1F ′(x∗)‖ ×

×‖
1∫

0

F ′(x∗)
−1F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ‖ ≤

≤
[
1∫
0

w((1− θ)e0)dθ + |1− α|
1∫
0

w1(θe0)dθ]e0

1− w0(e0)
≤

≤ g1(e0)e0 ≤ e0 < ρ∗,(2.17)

showing (2.11) for n = 0, y0 ∈ U(x∗, ρ∗) and z0, x1 are well defined (see (2.15)
for u = y0). Then, we can also write

z0 − x∗ = x0 − x∗ − F ′(x0)
−1F (x0) + (F ′(x0)

−1 − F ′(y0)
−1)F (x0) =

= (x0 − x∗ − F ′(x0)
−1F (x0)) +

+F ′(x0)
−1[(F ′(y0)− F ′(x∗)) + (F ′(x∗)− F ′(x0))]F

′(y0)
−1F (x0).(2.18)
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Hence, as in (2.17) but using (2.18), we get in turn that

‖z0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)
−1F (x0)‖+

+‖F ′(x0)
−1F ′(x∗)‖ ‖F ′(x∗)

−1(F ′(y0)− F ′(x∗))‖+
+‖F ′(x∗)

−1(F ′(x∗)− F ′(x0))‖ ‖F ′(y0)
−1F ′(x∗)‖ ×

×‖F ′(x∗)
−1F (x0)‖ ≤

≤ [g0(e0) +

(w0(e0) + w0(‖y0 − x∗‖))
1∫
0

w1(θe0)dθ

(1− w0(e0))(1− w0(‖y0 − x∗‖))
]e0 ≤

≤ g2(e0)e0 ≤ e0,(2.19)

showing (2.12) for n = 0 and z0 ∈ U(x∗, ρ∗). Then, by the last substep of (1.2)
for n = 0, we first have

x1 − x∗ = z0 − x∗ − (2F ′(y0)
−1 − F ′(x0)

−1)F (z0) =

= (z0 − x∗ − F ′(z0)
−1F (z0)) +

+[(F ′(z0)
−1 − F ′(y0)

−1) + (F ′(x0)
−1 − F ′(y0)

−1)]F (z0),

(2.20)

so as in (2.19)

e1 ≤ [g0(‖z0 − x∗‖) +
(

w0(‖z0 − x∗‖) + w0(‖y0 − x∗‖)
(1− w0(‖z0 − x∗‖))(1− w0(‖y0 − x∗‖))

+

+
w0(‖z0 − x∗‖) + w0(e0)

(1− w0(e0))(1− w0(‖y0 − x∗‖))

) 1∫

0

w1(θ‖z0 − x∗‖)dθ]‖z0 − x∗‖ ≤(2.21)

≤ g3(e0)e0 ≤ e0,

which completes the induction for estimates (2.11)–(2.13) for n = 0. Suppose
these estimates hold form = 0, 1, 2, . . . , n. Then, by switching x0, y0, z0, x1 with
xm, ym, zm, xm+1, respectively in the preceding calculations, we terminate the
induction for estimates (2.11)–(2.13) for all n. Then, for the estimate

(2.22) ‖xm+1 − x∗‖ ≤ r‖xn − x∗‖ < ρ∗, r = g3(e0) ∈ [0, 1),

we deduce limm→∞ xm = x∗ and xm+1 ∈ U(x∗, ρ∗). Concerning the uniqueness
of the solution part of the proof, let x∗∗ ∈ Ω1 with F (x∗∗) = 0 and define
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G =
∫ 1

0
F ′(x∗∗ + θ(x∗ − x∗∗))dθ. Then, by (a2) and (a5), we obtain

‖F ′(x∗)
−1(G− F ′(x∗))‖ ≤

1∫

0

w0((1− θ)‖x∗ − x∗∗‖)dθ ≤

≤
1∫

0

w0(θρ̄)dθ < 1,(2.23)

so G−1 exists and x∗ = x∗∗ follows from 0 = F (x∗)−F (x∗∗) = G(x∗ − x∗∗). �

Remarks. 1. By (a2), and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖ ≤
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + w0(‖x− x∗‖)

second condition in (a3) can be dropped, and w1 be defined as

w1(t) = 1 + w0(t).

Notice that, if w1(t) < 1 + w0(t), then R1 can be larger (see Example 3.1).

2. The results obtained here can be used for operators G satisfying au-
tonomous differential equations [1]–[5] of the form

F ′(x) = T (F (x))

where T is a continuous operator. Then, since F ′(x∗) = T (F (x∗)) = T (0), we
can apply the results without actually knowing x∗. For example, let F (x) =
= ex − 1. Then, we can choose: T (x) = x+ 1.

3. The local results obtained here can be used for projection algorithms such
as the Arnoldi’s algorithm , the generalized minimum residual algorithm (GM-
RES), the generalized conjugate algorithm (GCR) for combined Newton/finite
projection algorithms and in connection to the mesh independence principle can
be used to develop the cheapest and most efficient mesh refinement strategies
[1]–[5].

4. Let w0(t) = L0t, and w(t) = Lt. The parameter rA = 2
2L0+L was shown

by us to be the convergence radius of Newton’s algorithm [2]

(2.24) xn+1 = xn − F ′(xn)
−1F (xn) for each n = 0, 1, 2, · · ·

under the conditions (a1)–(a3) (w1 is not used). It follows that the convergence
radius R of algorithm (1.2) cannot be larger than the convergence radius rA of
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the second order Newton’s algorithm (2.24). As already noted in [3] rA is at
least as large as the convergence ball given by Rheinboldt [1]

rTR =
2

3L1
,

where L1 is the Lipschitz constant on Ω, L0 ≤ L1 and L ≤ L1. In particular,
for L0 < L1 or L < L1, we have that

rTR < rA and
rTR

rA
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s.
The same value for rTR was given by Traub [1].

5. It is worth noticing that solver (1.2) is not changing, when we use the
conditions (A) of Theorem 2.1 instead of the stronger conditions used in [15].
Moreover, we can compute the computational order of convergence (COC)
defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖

‖xn−1 − x∗‖

)

or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖

‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that avoids
the existence of the seventh Fréchet derivative for operator F.

3. Numerical examples

In all the examples we have taken α = 1
2∗L1 .

Example 3.1. Let B1 = B2 = Ω = R. Define F (x) = sinx. Then, we get that
x∗ = 0, ω0(s) = ω(s) = s and ω1(s) = 1. Then, we have

Radius ω1(s) = 1 ω1(s) = 1 + ω0(s)
r1 0.3333 0.3333
r2 0.2845 0.2613
r3 0.2469 0.2221

Table 1. Radius for Example 3.1
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Example 3.2. Let B1 = B2 = C[0, 1], the space of continuous functions
defined on [0, 1] with the max norm. Let Ω = U(0, 1). Define function F on Ω
by

(3.1) F (ϕ)(x) = ϕ(x)− 5

1∫

0

xθϕ(θ)3dθ.

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

1∫

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω.

Then, we get that x∗ = 0, ω0(s) = ω1(s) = 7.5s, ω1(s) = 2. This way, we have
that

Radius ω1(s) = 1 ω1(s) = 1 + ω0(s)
r1 0.0444 0.0444
r2 0.0253 0.0400
r3 0.0211 0.0329

Table 2. Radius for Example 3.2

Example 3.3. Let B1 = B2 = R3, Ω = U(0, 1), x∗ = (0, 0, 0)T , and define F
on Ω by

(3.2) F (x) = F (u1, u2, u3) = (eu1 − 1,
e− 1

2
u2

2 + u2, u3)
T .

For the points u = (u1, u2, u3)
T , the Fréchet derivative is given by

F ′(u) =




eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1


 .

Using the norm of the maximum of the rows and since G′(x∗) = diag(1, 1, 1),

we get by conditions (A) ω0(s) = (e − 1)s, ω(s) = e
1

e−1 s, and ω1(s) = e
1

e−1 .
Then, we have
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Radius ω1(s) = 1 ω1(s) = 1 + ω0(s)
r1 0.2488 0.2488
r2 0.2496 0.1370
r3 0.2240 0.1217

Table 3. Radius for Example 3.3

Example 3.4. Returning back to the motivational example at the introduction
of this study, we have ω0(s) = ω(s) = 96.662907s, ω1(s) = 1.0631. Then, we
have

Radius ω1(s) = 1 ω1(s) = 1 + ω0(s)
r1 0.0034 0.0034
r2 0.0028 0.0027
r3 0.0025 0.0023

Table 4. Radius for Example 3.4
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