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Abstract. Iterative methods free of derivatives are useful for generating a
sequence approximating a solution of nonlinear equations involving Banach
space valued operators. The high convergence order of these methods is
important too. The aim of this article is to extend the convergence of
these methods in cases not covered before. Numerical experiments test
our theoretical results.

1. Introduction

A plethora of applications from various disciplines results to finding a solu-
tion x∗ of the equation

(1.1) F (x) = 0,

with F : D ⊂ B1 → B2 is being differentiable as by Frechét, where B1, B2 stand
for Banach spaces and D being an open and convex set. The solution x∗ is
elusive in many cases as a closed form. Therefore, researchers and practitioners
develop iterative methods producing sequences converging to the solution under
some sufficient semilocal criteria on the initial data. Some popular and well
studied methods are:
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Newton’s method:

(1.2) xn+1 = xn − F �(xn)
−1F (xn),

Traub’s-Steffensen’s method:

(1.3) xn+1 = xn − [wn, xn;F ]−1F (xn),

where x0 ∈ D, n = 0, 1, 2, . . ., wn = xn + bF (xn), b ∈ IR and [·, ·;F ] :
: D ×D → L(B1, B2) is the standard divided difference of order one [2, 12]. If
b = 1, (1.3) reduces to the popular Steffensen’s method [4, 11, 12, 13].

Shamanskii in [18] (when B1 = B2 = IRk) showed that method (1.3) is of
order two if we start close enough to the solution. Notice that method (1.3)
is not using derivatives (as in the case of methods (1.2) also of order two)
which are expensive to compute in general. Many attempts have been made to
increase the order of convergence for iterative methods [6, 7, 8, 11].

Recently, in particular the local convergence of the following methods has
been studied in [5] when B1 = B2 = IRk:

(1.4)
yn = xn −A−1

n F (xn),
xn+1 = yn −B−1

n F (yn),

and the Kurchatov-type method with memory

(1.5)
wn = xn − C−1

n F (xn),
yn = xn −A−1

n F (xn),
xn+1 = yn −B−1

n F (yn),

where An = [wn, xn;F ], Bn = [wn, yn;F ] and Cn = [2xn − xn−1, xn−1;F ],
x0, x−1 ∈ D, n = 0,1,2, . . ..

Method (1.4) is shown to be of order three using hypotheses up to the
fifth derivative, whereas method (1.5) is of order fifth. But these high order
derivatives are not on these methods.

Note that Kurchatov’s method

(1.6) xn+1 = xn − C−1
n F (xn), x0, x−1 ∈ D, n = 0,1,2, . . .

was proposed in [10]. It was later explored in [1, 2, 15, 16, 17]. Other modifi-
cations of Kurchatov’s method are discussed in [3, 14].

These hypotheses limit the applicability of the methods. Indeed, consider
the academic and motivational example, when B1 = B2 = IR and D = [− 1

2 ,
3
2 ]

given by

f(x) =

{
x3 lnx2 + x5 − x4, x �= 0,

0, x = 0.
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Then, f ���(x) is unbounded on D. Hence, the results in [5] do not guarantee
the convergence of method (1.4) or (1.5) to x∗ = 1 (although these methods
may converge). Other problems with the analysis in [5] include no computable
bounds on �xn − x∗�, results on the uniqueness of x∗ in D or how the initial
point x0 is chosen. Based on the above it is clear that a weaker convergence
analysis is needed that also addresses all these problems. The novelty of our
paper lies in the fact that we only use hypotheses on the derivative of order
one. Our idea can be used to extend the usage of other methods using inverses
in a similar fashion [1] – [18].

2. Convergence for method (1.4)

It is convenient to introduce some scalar functions and constants to be used
in the local convergence. Let ω0 : [0,∞)× [0,∞) → [0,∞) be a continuous and
increasing function satisfying ω0(0, 0) = 0 and let α ≥ 0. Suppose equation

(2.1) ω0(αt, t) = 1

has a minimal positive root ρ1. Let ω : [0, ρ1)× [0, ρ1) → [0,∞) be a continuous
and increasing function satisfying ω(0, 0) = 0. Define functions g1 and g2 on
the interval [0, ρ1) by

g1(t) =
ω((1 + α)t, t)

1− ω0(αt, t)

and

h1(t) = g1(t)− 1.

By these definitions h1(0) = −1 and h1(t) → ∞ as t → ρ−1 . Denote by
r1 the minimal root of equation h1(t) = 0 in (0, ρ1) assured to exist by the
intermediate value theorem.

Suppose that equation

(2.2) ω0(αt, g1(t)t) = 1

has a minimal positive root ρ2. Set ρ = min{ρ1, ρ2}. Define functions g2 and
h2 on the interval [0, ρ) by

g2(t) =
ω(αt+ g1(t)t, g1(t)t)g1(t)

1− ω0(αt, g1(t)t)

and

h2(t) = g2(t)− 1.
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We get again h2(0) = −1 and h2(t) → ∞ as t → ρ−2 . Denote by r2 the
minimal root of equation h2(t) = 0 in (0, ρ). Define a radius of convergence r
by

(2.3) r = min{r1, r2}.
Then, for all t ∈ [0, r) we obtain

(2.4) 0 ≤ ω0(αt, t) < 1,

(2.5) 0 ≤ ω0(αt, g1(t)t) < 1,

(2.6) 0 ≤ g1(t) < 1

and

(2.7) 0 ≤ g2(t) < 1.

we denote by U(v, s) and Ū(v, s) the open and closed balls in B1 of center
v ∈ D and with radius s > 0.

The following conditions (A) are utilized in our analysis:

(A1) F : D → B2 is differentiable, [·, ·;F ] : D × D → L(B1, B2) is a
standard divided difference of order one, and x∗ ∈ D exists with F (x∗) = 0
which is simple.

(A2) ω0 : [0,∞) × [0,∞) → [0,∞) is a continuous and increasing function
with ω0(0, 0) = 0 such that for all x, y ∈ D

�F �(x∗)−1([x, y;F ]− F �(x∗))� ≤ ω0(�x− x∗�, �y − x∗�)
and

�I + b[x, x∗;F ]� ≤ α�x− x∗�
for some α ≥ 0.

Set D0 = D
⋂
U(x∗, ρ1).

(A3) ω : [0, ρ1) × [0, ρ1) → [0,∞) is a continuous and increasing function
with ω(0, 0) = 0 such that for all x, y ∈ D0

�F �(x∗)−1([x, y;F ]− [y, x∗;F ])� ≤ ω(�x− y�, �y − x∗�).
(A4) U(x∗, r∗) ⊂ D, r∗ = max{r, αr}, ρ1, ρ2 given in (2.1) and (2.2) exist

and r is defined in (2.3).

(A5) There exist r̄ ≥ r such that

ω0(0, r̄) < 1 or ω0(r̄, 0) < 1.

Set D1 = D
⋂
Ū(x∗, r∗).

Next, the conditions (A) together with the preceding notation are utilized
in the local convergence analysis of method (1.4).
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Theorem 2.1. Assume that conditions (A) hold and choose starting point
x0 ∈ U(x∗, r)− {x∗}. Then, the following items hold

(2.8) xn ∈ U(x∗, r),

(2.9) lim
n→∞xn = x∗,

(2.10) �wn − x∗� ≤ α�xn − x∗� ≤ αr,

(2.11) �yn − x∗� ≤ g1(�xn − x∗�)�xn − x∗� ≤ �xn − x∗� ≤ r,

(2.12) �xn+1 − x∗� ≤ g2(�xn − x∗�)�xn − x∗� ≤ �xn − x∗�,
and x∗ is the only solution of equation F (x) = 0 in the set D1 given in (A5).

Proof. By (A2), (2.1), (2.3), (2.4) and choice x0 ∈ U(x∗, r)− {x∗}, we have

�w0 − x∗� = �(I + b[x0, x∗;F ])(x0 − x∗)� ≤
≤ �(I + b[x0, x∗;F ])��x0 − x∗� ≤ α�x0 − x∗� ≤ αr(2.13)

and

(2.14) �F �(x∗)−1(A0 − F �(x∗))� ≤ ω0(�w0 − x∗�, �x0 − x∗�) ≤ ω0(αr, r) < 1.

Consequently, by Lemma of Banach for invertible operator [9] and (2.14), we
get A0 is invertible and

(2.15) �A−1
0 F �(x∗)� ≤ 1

1− ω0(�w0 − x∗�, �x0 − x∗�) .

Hence, y0 is well defined by the method (1.4) for n = 0. Using (2.3), (A3),
(2.15) and for first substep of method (1.4) for n = 0, we obtain

�y0 − x∗� = �x0 − x∗ −A−1
0 F (x0)� =

= �[A−1
0 F �(x∗)][F �(x∗)−1(A0 − [x0, x∗;F ])��x0 − x∗�)� ≤

≤ �A−1
0 F �(x∗)��F �(x∗)−1(A0 − [x0, x∗;F ])��x0 − x∗�)� ≤

≤ ω(�w0 − x∗�, �x0 − x∗�)�x0 − x∗�
1− ω0(�w0 − x∗�, �x0 − x∗�) ≤

≤ ω((1 + α)�x0 − x∗�, �x0 − x∗�)
1− ω0(�w0 − x∗�, �x0 − x∗�) �x0 − x∗� ≤

≤ g1(�x0 − x∗�)�x0 − x∗� ≤ �x0 − x∗� < r,(2.16)
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so y0 ∈ U(x∗, r) and (2.10),(2.11) hold for n = 0. Moreover, we have by the
second substep of method (1.4), (2.3),(2.15) and (2.16) that

�x1 − x∗� = �[B−1
0 F �(x∗)][F �(x∗)−1(B0 − [y0, x∗;F ])(y0 − x∗)� ≤

≤ �B−1
0 F �(x∗)��F �(x∗)−1(B0 − [y0, x∗;F ])��y0 − x∗� ≤

≤ ω(�w0 − y0�, �y0 − x∗�)
1− ω0(α�x0 − x∗�, �y0 − x∗�)�y0 − x∗� ≤

≤ g2(�x0 − x∗�)�x0 − x∗� ≤ �x0 − x∗� < r,(2.17)

showing x1 ∈ U(x∗, r) and (2.12) for n = 0.

These computations can be repeated with xi, wi, yi, xi+1 replacing x0, w0, y0, x1

in the preceding computions to end the induction for (2.8)–(2.12). Furthermore,
in view of the estimate

(2.18) �xi+1 − x∗� ≤ c�xi − x∗� < r,

where c = g2(�x0−x∗�) ∈ [0, 1), we conclude xi+1 ∈ U(x∗, r) and lim
i→∞

xi = x∗.

Finally, let Q = [x∗, y∗;F ] for y∗ ∈ D1 with F (y∗) = 0. Then, using (A2) and
(A5), we get in turn that

(2.19) �F �(x∗)−1(Q− F �(x∗))� ≤ ω0(�x∗ − x∗�, �y∗ − x∗�) ≤ ω(0, r̄) < 1,

so Q is invertible. Therefore, x∗ = y∗ is obtained from

0 = F (x∗)−F (y∗) = [x∗, y∗;F ](x∗−y∗) = Q(x∗−y∗). �

3. Convergence for method (1.5)

As in Section 2, suppose equation

(3.1) ω0(3t, t) = 1

has a minimal positive solution ρ0. Define functions g0 and h0 on the interval
[0, ρ0) by

g0(t) =
ω(2t, t)

1− ω0(3t, t)

and
h0(t) = g0(t)− 1.

Denote by r0 the minimal solution of equation h0(t) = 0 in (0, ρ0).

Suppose that equation

(3.2) ω0(g0(t)t, t) = 1

has a minimal positive solution ρ1.
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Define functions g1 and h1 on the interval [0,min{ρ0, ρ1}) by

g1(t) =
ω((1 + g0(t))t, t)

1− ω0(g0(t)t, t)

and
h1(t) = g1(t)− 1.

Denote by r1 the minimal solution of equation h1(t) = 0 in [0,min{ρ0, ρ1}).
Suppose that equation

(3.3) ω0(g0(t)t, g1(t)t) = 1

has a minimal positive solution ρ2. Set ρ = min{ρ0, ρ1, ρ2}. Define functions
g2 and h2 on interval [0, ρ) by

g2(t) =
ω(g0(t)t+ g1(t)t, g1(t)t)g1(t)

1− ω0(g0(t)t, g1(t)t)

and
h2(t) = g2(t)− 1.

Denote by r2 the minimal solution of equation h2(t) = 0 in (0, ρ). Define a
radius of convergence r by

(3.4) r = min{r0, r1, r2}.

Then, for all t ∈ [0, r)

(3.5) 0 ≤ ω0(3t, t) < 1,

(3.6) 0 ≤ ω0(g0(t)t, t) < 1,

(3.7) 0 ≤ ω0(g0(t)t, g1(t)t) < 1,

(3.8) 0 ≤ g0(t) < 1,

(3.9) 0 ≤ g1(t) < 1

and

(3.10) 0 ≤ g2(t) < 1.
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We shall use conditions (H):

(H1) = (A1).

(H2) ω0 : [0,∞) × [0,∞) → [0,∞) is continuous and increasing function
with ω0(0, 0) = 0 such that for all x, y ∈ D

�F �(x∗)−1([x, y;F ]− F �(x∗))� ≤ ω0(�x− x∗�, �y − x∗�)
and

�I + b[x, x∗;F ]� ≤ α�x− x∗�.
Set D0 = D

⋂
U(x∗, ρ0).

(H3) = (A3).

(H4) U(x∗, 3r) ⊂ D, where r is defined in (3.3) and ρ0, ρ1, ρ2 exist and are
given by (3.1), (3.2) and (3.3), respectively.

(H5) = (A5).

Next, the conditions (H) and the preceding notation give the local conver-
gence analysis of method (1.5).

Theorem 3.1. Assume that conditions (H) hold and choose starting points
x−1, x0 ∈ U(x∗, r)− {x∗}. Then, the following items hold

xn ∈ U(x∗, r),

lim
n→∞xn = x∗,

�wn − x∗� ≤ g0(r)�xn − x∗� ≤ �xn − x∗� < r,

�yn − x∗� ≤ g1(r)�xn − x∗� ≤ �xn − x∗� < r

and

�xn+1 − x∗� ≤ g2(r)�xn − x∗� ≤ �xn − x∗� < r,

and x∗ is the only solution of equation F (x) = 0 in the set D1 given in (H5).

Proof. As in the proof of Theorem 2.1, we use mathematical induction to
obtain

�wn − x∗� = �[C−1
n F �(x∗)][F �(x∗)−1(Cn − [xn, x∗;F ])(xn − x∗)]� ≤

≤ ω(�2xn − xn−1 − xn�, �xn−1 − x∗�)�xn − x∗�
1− ω0(�2xn − xn−1 − x∗�, �xn−1 − x∗�) ≤

≤ ω(�xn − x∗�+ �xn−1 − x∗�, �xn−1 − x∗�)�xn − x∗�
1− ω0(2�xn − x∗�+ �xn−1 − x∗�, �xn−1 − x∗�) ≤

≤ g0(r)�xn − x∗� ≤ �xn − x∗� < r,



Extending the applicability of methods free of derivatives 297

�2xn−xn−1−x∗� ≤ �xn−x∗�+�xn−1−xn� ≤ ≤ 2�xn−x∗�+�xn−1−x∗� ≤ 3r,

and as in (2.16), (2.17), respectively

�yn − x∗� ≤ g1(r)�xn − x∗� ≤ �xn − x∗� < r,

�xn+1 − x∗� ≤ g2(r)�xn − x∗� ≤ �xn − x∗� < r. �

4. Numerical examples

We use [x, y;F ] =
1�
0

F �(y + θ(x− y))dθ and b = 1 in all examples.

Example 4.1. Define D = U(0, 1), v = (v1, v2, v3)
T , function F : D → IR3 by

F (v) =
�
ev1 − 1,

e− 1

2
v22 + v2, v3

�T
.

Hence, we get

F �(v) =

⎛
⎝

ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1

⎞
⎠ .

Then, we have for x∗ = (0, 0, 0)T that ω0(s, t) =
e− 1

2
(s + t),

ω(s, t) = (e− 1)s+ e
1

e−1 t and α =
e+ 3

2
.

Example 4.2. Let us choose B1 = B2 = C[0,1]. Set D = U(0, 1), and define
function F on D by

F (Γ)(x) = ψ(x)−
1�

0

xθΓ(θ)3dθ

and

F �(Γ(ξ))(x) = ξ(x)− 3

1�

0

xθΓ(θ)2ξ(θ)dθ.

Then, we have for x∗ = 0 that ω0(s, t) =
3

2
(s + t), ω(s, t) = 3(s + t) and

α = 5.

Example 4.3. For the academic problem that we considered in the introduc-

tion we have for x∗ = 0, ω0(s, t) = ω(s, t) =
96.662907

2
(s+ t) and α = 52.
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Example Method (1.4) Method (1.5)
4.1 7.873962171772243e-02 1.315565965112603e-01
4.2 2.973980668120351e-02 7.599937578041070e-02
4.3 1.500342940298857e-04 3.448409981435105e-03

Table 1. Values of convergence radii

In Table 1 there are the convergence radii of the considered methods. The
Kurchatov-type method with memory (1.5) has a wider convergence region
than method (1.4).

Starting points Kurchatov’s method (1.6) Method (1.4) Method (1.5)
(0.1, 0.1, 0.1) 4 4 3

(3, 3, 3) 9 5 5
(1, 2, 0.5) 7 6 4
(1, 5, 5) 8 9 4
(2, 10, 5) 9 19 5

Table 2. Count of iterations for Example 4.1

In Table 2 we give a count of iterations, which need to solve a system of
nonlinear equations from Example 4.1. Results are obtained for ε = 10−8.
Additional starting point is chosen as x−1 = x0 + 0.0001. We can see that the
method (1.5) is faster than method (1.4) and the Kurchatov’s method.

5. Conclusion

Problems from a plethora of areas can be solved by considering the corre-
sponding equation given on a suitable abstract space by Mathematical Mod-
eling. A sequence is then constructed by some developed method whose limit
solves the equation. Looking at this direction together with the need for the
development of faster methods and a wider range of initial guesses, we studied
method (1.4) and (1.5) (given in [5] for B1 = B2 = IRk) in the more general
case of a space according to Banach. Our conditions involve the first order
derivative appearing in the method whereas the work in [5] used higher order
derivatives not on these methods. Our analysis produces error estimates, a
radius of convergence and results on the location for the solution that are com-
putable. This was not done in [5]. Hence, we expand the usage of the methods.
Our idea can be used on other methods with the same benefits. Numerical
experiments testing our theory and the performance of the methods terminate
this article.
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