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Abstract. As a generalization of quasi-injective modules, an R-module M
is pseudo N -c∗-injective for every R-module N iff M is injective. In view
of this new fact, we can get new generalizations of the following important
observations taking the pseudo N -c∗-injectivity instead of the continuity
and the injectivity, respectively: if R is right continuous, left min-CS and
satisfies ACC on its right annihilators then R is quasi Frobenius, and if
R

(N)
R is injective then R is quasi Frobenius.

1. Introduction

Throughout this paper, R is an associative ring with identity and all mod-
ules are unitary. MR (RM) denotes a right (left) R-module. For a module M ,
we use E(M) and End(MR) to denote the injective hull and the endomorphism
ring of M , respectively. We write N ≤ M if N is a submodule of M , N ≤ess M
if N is an essential submodule of M and N ≤⊕ M if N is a direct summand
of M . We denote by Mn(R) for the n× n matrix ring over R.
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We first recall some known notions and facts needed in the sequel.

For any submoduleK ofM the family of submodulesN satisfyingK∩N = 0
has a maximal member by Zorn’s Lemma, which is called complement of K in
M . A submodule N of M is called a complement in M if N is a complement
of a submodule of M . It is well known that a submodule is a complement in
M if and only if it has no proper essential extensions in M (namely, a closed
submodule). A module is called a CS-module, or extending, or it satisfies
(C1) provided every complement submodule is a direct summand. Note that
semi-simple modules, uniform modules and injective modules are CS. Injective
modules and CS-modules are very important in algebra because their structures
are well known for many classes of rings and each module has a unique injective
envelope. There are other generalizations of injectivity;

C2: Every submodule of M that is isomorphic to a direct summand of M
is itself a direct summand of M .

C3: If A and B are direct summands of M with A ∩B = 0, then A⊕B is
also a direct summand of M .

Clearly, each C2-module is also a C3-module. However, if R is any integral
domain which is not a field, then R is C3, but not C2.

A moduleM is quasi-injective in case each homomorphism g : N → M from
a submodule N of M extends to M . For example, each semisimple module is
quasi-injective. A module M is continuous, if M is both C1 and C2; M is
quasi-continuous if M is both C1 and C3. We have the following hierarchy for
any module M : M is injective ⇒ M is quasi-injective ⇒ M is continuous ⇒ M
is quasi-continuous. Let R be any hereditary two-sided noetherian right V-ring.
By [4, Proposition 5.19(3)], the classes of all quasi-injective and all injective
modules coincide and the class Ci (i = 2, 3) is closed under finite direct sums if
and only if Ci (i = 2, 3) coincides with the class of all injective modules if and
only if R is a semisimple artinian ring by [16, Theorem 3.2].

A module M is called continuous (resp., quasi - continuous) if it satisfies
C1 and C2 (resp., C1 and C3).

As natural generalizations of quasi-injective modules:

An R-module M is called GQ-injective (generalized quasi-injective) if, for
any submodule N which is isomorphic to a complement K of M , every left
R-homomorphism of N into M extends to an endomorphism of M [10].

A module X is called M -c-injective if, for every closed submodule K of M,
every homomorphism f : K → X can be lifted to M ([3]). The module M is
called self-c-injective if M is M -c-injective.

A moduleM is called pseudo-injective ifM is invariant under any monomor-
phism of its injective hull E(M). By [8], a module is quasi-injective if and only
if it is pseudo-injective CS.
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A submodule N of M is called an automorphism-invariant submodule
if fN ⊆ N for every automorphism f of M , and a module is called an
automorphism-invariant module if it is an automorphism-invariant submodule
of its injective hull [12].

A module N is said to be pseudo M -c∗-injective if for any submodule A
of M which is isomorphic to a closed submodule of M , every monomorphism
from A to N can be extended to a homomorphism from M to N ([15]). A
module M is called pseudo c∗-injective if M is pseudo M -c∗-injective. A ring
R is called right (resp., left) pseudo c∗-injective if RR (resp., RR) is pseudo
c∗-injective.

It is easy to see that automorphism-invariant modules are pseudo c∗-injec-
tive. We have some examples showed that there exist automorphism-invariant
modules which are not quasi-injective or self-injective.

In the present paper, we continue to develop properties of these modules.
Here we prove that the class of pseudo c∗-injective modules is closed under
taking direct summands. By [15], the class of pseudo c∗-injective modules is a
proper extension of the class of continuous modules and it is a proper subclass
of modules which satisfy the C2 condition.

A ring R is called quasi Frobenius if R is two-sided self injective two-sided
Artinian and R is called rightmin-CS if every its minimal right ideal is essential
in a direct summand of R. It is easy to see that, if R is right (resp., left) CS
then R is right (resp., left) min-CS. The converse is not true in general. For

example, let R =

(
Z4 Z4

0 Z4

)
, then R is right min-CS but it is not right CS

([13, page 86]).

In [14], Nicholson and Yousif proved that, if R is right continuous, left
min-CS and satisfies ACC on its right annihilators then R is quasi Frobenius.
In Theorem 3.12, we proved that if R is right pseudo c∗-injective, two-sided
min-CS and satisfies ACC on its right annihilators then R is quasi Frobenius.

In [7], the authors C. Faith and D. V. Huynh proved if R
(N)
R is injective

then R is quasi Frobenius. In Corollary 3.13, we proved that if R
(N)
R is pseudo

c∗-injective then R is quasi Frobenius.

2. Examples

Recall that quasi-injective or self-injective modules are automorphism in-
variant and automorphism invariant modules are pseudo c∗-injective.

The following two examples give us that there exists an indecomposable
module with finite Goldie dimension which is automorphism invariant but not
quasi-injective.
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Example 2.1. Let R =

⎡
⎣

F2 F2 F2

0 F2 0
0 0 F2

⎤
⎦ where F2 is the field of two elements.

Take M :=

⎡
⎣

F2 F2 F2

0 0 0
0 0 0

⎤
⎦ = e11R, where e11 is a primitive idempotent.

ClearlyM is an indecomposable right R-module. Since R is a finite-dimensional
F2-algebra, M is an artinian right R-module and hence it has finite Goldie
dimension.

Note that M has two simple submodules S1 = e12R =

⎡
⎣

0 F2 0
0 0 0
0 0 0

⎤
⎦ and

S2 = e13R =

⎡
⎣

0 0 F2

0 0 0
0 0 0

⎤
⎦, which implies that M is automorphism invariant.

But clearly M is not quasi-injective as it is not uniform.

Example 2.2. Let A = F2[x] where F2 is the field of two elements and

R =

�
A/(x) 0
A/(x) A/(x2)

�
. Take M :=

�
0 0

A/(x) A/(x2)

�
M = e22R, where

e22 is a primitive idempotent. Clearly, M is an indecomposable right R-

module. Note that M has two simple submodules S1 =

�
0 0

A/(x) 0

�
and

S2 =

�
0 0
0 (x)/(x2)

�
such that S1 ⊕ S2 is essential in M . Clearly, R is a

finite-dimensional F2-algebra. Then M is automorphism invariant. But M is
not quasi-injective as M is not uniform.

Example 2.3. Consider the ring R consisting of all eventually constant se-
quences of elements from F2. Clearly, R is a commutative automorphism-
invariant ring as the only automorphism of its injective envelope is the identity
automorphism. But R is not self-injective.

Example 2.4. Let D be a PCI-domain, that is not a division ring. Denote by
E(D) the injective hull of D. Then E(D)/D is semisimple, and so E(D) has a
maximal submodule M containing D. It follows that M is a continuous right
D-module and not injective. Then, M is pseudo c∗-injective. Assume that M
is automorphism invariant, then M would be injective by [9, Corrolary 3.3], a
contradiction. Thus, M is not automorphism invariant.
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3. Results

We begin with recalling the basic properties of pseudo M -c∗-injective mod-
ules.

Lemma 3.1 ([15, Lemma 3.1]). Let M and N be two modules.

(1) If N is pseudo M -c∗-injective and A is a direct summand of N , A is
pseudo M -c∗-injective.

(2) If N is pseudo M -c∗-injective and B is a closed submodule of M , N is
pseudo B-c∗-injective.

(3) If M is pseudo c∗-injective, A is pseudo c∗-injective for all fully invariant
closed submodule A of M .

Lemma 3.2. Let M,M �, N,N � be modules, M ∼= M � and N ∼= N �. If M is
pseudo N -c∗-injective then M � is pseudo N �-c∗-injective.

Proof. Let K ≤ M �. Assume K is isomorphic to a closed submodule
of M � and consider the monomorphism f : K → N �. If ϕ : M � → M ,
ψ : N � → N is an isomorphism, then ϕ(K) is closed in M and ψf : K → N
is a monomorphism. Set g = ψfϕ−1

|ϕ(K) : ϕ(K) → N . By the hypothesis, there

exists a homomophism h : M → N such that it is an extension of g. Now, we
show that ψ−1hϕ : M � → N � is an extension of f . For every k ∈ K, we get
(ψ−1hϕ)(k) = ψ−1(hϕ(k)) = ψ−1(gϕ(k)) = ψ−1(ψf(k)) = f(k), as desired. �

Theorem 3.3. Let M and N be two modules.

(1) If M is a pseudo c∗-injective module, then

(a) Every direct summand of M is also pseudo c∗-injective.

(b) If N ∼= M , then N is pseudo c∗-injective.

(2) If N = Πi∈INi is pseudo M -c∗-injective then Ni is pseudo M -c∗-injective
for all i ∈ I.

(3) Let M = ⊕i∈IMi, Mi is uniform module for all i = 1, 2, ..., n. Then M
is continuous if and only if M is pseudo c∗-injective.

Proof. (1) This follows from Lemmas 3.1 and Lemma 3.2.

(2) Let N = Πi∈INi be a pseudo M -c∗-injective, A be a submodule which is
isomorphic to a closed submodule of M and fi : A → Ni be a monomorphism.
Consider the natural inclusions ηi : Ni → N and the canonical projections
πi : N → Ni. Clearly, gi = ηi ◦ fi : A → X is a monomorphism. Then, there
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exists a homomorphism ϕi : M → X which extends to gi. Set ψi = πi ◦ gi. It
is easy to see that ψi is an extension of fi. Thus, Ni is pseudo M -c∗-injective.

(3) This is [15, Theorem 3.4]. �

Recall that a ring R is called right hereditary (resp., semihereditary) if every
right (resp., finitely generated) ideal of R is projective as R-module. In [11,
Corollary 2.28], Lam proved that a ring R is right semihereditary if and only if
every right finitely generated projective submodule of R-module is projective.
We have:

Theorem 3.4. The following conditions are equivalent for a ring R:

(1) Every right closed ideal of R is projective;

(2) Every factor module of a pseudo RR-c
∗-injective module is also pseudo

RR-c
∗-injective;

(3) Every factor module of a pseudo RR-injective module is pseudo RR-c
∗-

injective;

(4) Every factor module of an injective module is pseudo RR-c
∗-injective.

Proof. (2) ⇒ (3) ⇒ (4) This is clear.

(1) ⇒ (2) Let E be a pseudo RR-c
∗-injective module and consider the

epimorphism π : E → B. Let f : I → B be a monomorphism, where I is a
right ideal of R. Consider the following diagram:

0
↓

0 −→ I
i−→ R

g � f ↓
E

π−→ B −→ 0

where i is the canonical monomorphism. By (1), I is projective. Then, there
exist a homomorphism g : I → E such that πg = f . Since E is pseudo RR-
c∗-injective, there exists a homomorphism h : R → E such that hi = g. Set
ϕ = πg : R → B. Then ϕi = f and so B is pseudo RR-c

∗-injective.

(4) ⇒ (1) Let I be a closed right ideal of R and consider the epimorphism
h : A → B and the homomorphism α : I → B. Clearly, ψ : B = h(A) →
→ A/Kerh is an isomorphism defined by ψ(h(a)) = a + Kerh. For the
monomorphism ι1 : A/Kerh → E(A)/Kerh, set j = ι1ψ and consider the
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following diagram:

I
i−→ R

↓ α

A
h−→ B −→ 0

↓ j

E(A)
p−→ E(A)/Kerh −→ 0

By (4), E(A)/Kerh is pseudo RR-injective. Then, there exists a homomor-
phism α� : R → E(A)/Kerh such that α�i = jα. Since RR is projec-
tive, there exists a homomorphic α�� : R → E(A) such that pα�� = α�. Set
h� = α��i : I → E(A). Clearly, h�(I) ≤ A, so there exists a homomorphism
ϕ : I → A such that ϕ(x) = h�(x) for all x ∈ I.

Now, we show hϕ = α. For every x ∈ I, we have jα(x) = α�(i(x)) = α�(x) =
= pα��(x) = ph�(x) = pα(x). Since, α is an epimorphism, α(x) = h(a) for some
a ∈ A. Then jα(x) = j(h(a)) = a + Kerh. Hence, a + Kerh = ϕ(x) + Kerh,
i.e., h(a− ϕ(x)) = 0. It follows ϕ(x) = h(a) = α(x). Thus, I is projective. �

Theorem 3.5 ([15, Theorem 3.3]). If M ⊕N is a pseudo c∗-injective then M
is N -injective.

Corollary 3.6. A ring R is right quasi injective if and only if (R ⊕ R)R is
pseudo c∗-injective.

From Corollary 3.6 and [13, Theorem 1.50], we have:

Corollary 3.7. A ring R is quasi Frobenius if and only if R satisfies ACC on
right (or left) annihilators and (R⊕R)R is pseudo c∗-injective.

Theorem 3.8. The following conditions are equivalent:

(1) The direct sum of every two pseudo c∗-injective modules is pseudo c∗-
injective;

(2) Every pseudo c∗-injective module is injective;

(3) The direct sum of any family of pseudo c∗-injective modules is pseudo
c∗-injective.

Proof. (1) ⇒ (2) Assume M is pseudo c∗-injective. By the hypothesis,
M ⊕ E(RR) is pseudo c∗-injective. By Theorem 3.5, M is E(RR)-injective, so
M is RR-injective. Hence, M is an injective R-module.

(2) ⇒ (3) We first prove R is a right Noetherian. Consider a family simple
modules (Si)i∈N and Ei = E(Si) be the injective envelopes of Si. Since ⊕i∈NSi
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is semisimple, it is pseudo c∗-injective. By the hypothesis, ⊕i∈NSi is injective.
Hence, ⊕i∈NSi is direct summand of ⊕i∈NEi. However, ⊕i∈NSi ≤e ⊕i∈NEi.
It follows ⊕i∈NSi = ⊕i∈NEi. So, ⊕i∈NEi is injective. By [11, Therem 3.46],
R is right Noetherian. Now, assume (Mi)i∈I is a family of pseudo c∗-injective
R-modules. Since, Mi is injective for all i ∈ I, we get ⊕IMi is injective. Hence,
⊕IMi is pseudo c∗-injective.

(3) ⇒ (1) This is clear. �

Recall the following hierarchy for any module M : M is injective ⇒ M is
quasi-injective.

Theorem 3.9. The following statements are equivalent for an R-module M :

(1) M is injective;

(2) M is pseudo N -c∗-injective for every R-module N .

Proof. (1) ⇒ (2) This is clear.

(2) ⇒ (1) Consider the external direct sum M ⊕ E(M). Then, M ⊕ 0 is
a closed submodule of M ⊕ E(M) and M ∼= 0 ⊕ M ∼= M ⊕ 0. Consider the
homomorphism α : M → 0 ⊕ M defined by α(m) = (0,m) for all m ∈ M .
Clearly, α is an isomorphism. By the hypothesis, M is pseudo M ⊕ E(M)-
c∗-injective. There exists a homomorphism β : M ⊕ E(M) → M such that
βj = α−1, where j : 0⊕M → M ⊕E(M) is the canonical projection. We have
βjα = α−1α = 1M and jα = ι2ι where ι : M → E(M), ι2 : E(M) → M⊕E(M)
are inclusions. Hence (βι2)ι = 1M . So, M is a summand of E(M), i.e., M is
injective. �

For a module M , we use J(M) and Soc(M) to denote the Jacobson radical
and the socle of M , respectively.

Proposition 3.10. If R is a right pseudo c∗-injective ring and R/ Soc(RR)
satisfies ACC on right annihilators, then J(R) is nilpotent.

Proof. Assume R/ Soc(RR) has ACC on right annihilators. Set S = Soc(RR)
and R = R/S. Take a ∈ R such that a = a+ S where a ∈ R.

For a1, a2, ... ∈ J(R), we have

rR(a1) ≤ rR(a2.a1) ≤ · · · ≤ rR(an...a2.a1).

By the hypothesis, there exists a positive integer m such that

rR(an...a2.a1) = rR(am...a2.a1)



Characterizations of QF-rings 283

for all n > m. For any n ∈ N, we have r(an+1an...a1) ≤e RR since an+1an...a1 ∈
∈ J(R) = Z(RR). Hence S ≤ r(an+1an...a1). Now we shall prove

rR(an...a2.a1) ≤ r(an+1an...a1)/S ≤ rR(an+1...a2.a1).

If b + S ∈ rR(an...a2.a1), then an...a1b ∈ S. Since S ≤ r(an+1), we get
an+1an...a1b = 0. Thus b ∈ r(an+1an...a1) which implies that
b+S ∈ r(an+1an...a1)/S. Clearly, r(an+1an...a1)/S ≤ rR(an+1...a2.a1). Hence,

r(am+1an...a1)/S = r(am+2am+1...a1)/S.

Then,
r(am+1an...a1) = r(am+2am+1...a1).

So, am+1am...a1R ∩ r(am+2) = 0. As r(am+2) is closed right ideal of R, we
have am+1am...a1 = 0 which shows J(R) is right T -nilpotent and (J(R)+S)/S
is a right T -nilpotent ideal. By [2, Proposition 29.1], (J(R)+S)/S is nilpotent.
There exists a positive integer number k such that J(R)k ≤ S. So, J(R)k+1 ≤
≤ SJ(R) = 0, i.e., J(R) is nilpotent. �

Recall that a family {Ai|i ∈ I} of submodules of a module M is independent
if and only if the sum of the Ai is a direct sum. Equivalently, the map ⊕i∈IAi →
→ ∑

i∈I Ai is an isomorphism. A family {Ai|i ∈ I} of independent submodules
of a moduleM is said to be a local direct summand if for any finite subset J ⊂ I,
⊕i∈JAi is a direct summand of M .

Lemma 3.11 ([15, Corollary 3.6]). If R is right pseudo c∗-injective and satis-
fies ACC on right annihilators, then R is semiprimary.

By [13], a ring R is quasi Frobenius if only if R is right continuous, left
min-CS and satisfies ACC on its right annihilators.

Theorem 3.12. The following conditions are equivalent for a ring R:

(1) R is quasi Frobenius;

(2) R is right pseudo-c∗-injective, two-sided min-CS and satisfies ACC on
right annihilators.

Proof. (1) ⇒ (2) This is clear.

(2) ⇒ (1) Since R is right pseudo-c∗-injective and satisfies ACC on right an-
nihilators, by [15, Corollary 3.6], R is semiprimary. Assume Soc(RR) = ⊕i∈ISi

where each Si is a simple. As R is right min-CS, there exists idempotents fi of
R such that Si ≤e fiR. On the other hand, (Si)i∈I is independent, so (fiR)i∈I

is independent and Soc(RR) ≤ ⊕i∈IfiR. Hence, ⊕i∈IfiR ≤e RR. By [15,
Theorem 3.1], RR satisfies the C2 condition. Then ⊕i∈IfiR is a local direct
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summand of RR. In addition, R satisfies ACC on right annihilators, by [6,
Lemma 8.1(1)], ⊕i∈IfiR is closed submodule of RR. Since ⊕i∈IfiR ≤e RR, we
get RR = ⊕i∈IfiR. So RR = ⊕n

i=1fiR (for some positive integer n) and fiR
are uniforms for all i = 1, 2, ..., n. By Theorem 3.3, R is right continuous and
so R is quasi Frobenius by [13, Theorem 4.22]. �

By [7], if R
(N)
R is injective, (i.e., R is right countable injective) then R is

quasi Frobenius.

Corollary 3.13. The following conditions are equivalent for a ring R:

(1) R is quasi Frobenius;

(2) R
(N)
R is pseudo c∗-injective.

Proof. (1) ⇒ (2) This is clear.

(2) ⇒ (1) This follows from Theorem 3.5 and [7, Corollary 9.1]. �
Corollary 3.14. The following conditions are equivalent for a ring R:

(1) R is quasi Frobenius;

(2) R is left Noetherian, right pseudo c∗-injective and two-sided min-CS.

Proof. (1) ⇒ (2) This is clear.

(2) ⇒ (1) As R is left Noetherian, R/J(R) is also a left Noetherian ring.
By [15, Corollary 3.4], R/J(R) is a von Neumann regular ring, so R/J(R) is
a semisimple Artinian ring. By Proposition 3.10, J(R) is nilpotent and so R
is semiprimary. Thus R is a left Artinian ring which implies that R satisfies
ACC on right annihilators. By Theorem 3.12, R is QF. �

We finish this part with a question: Is there a right pseudo c∗-injective and
right min-CS ring but it is not right continuous?

4. On rings in which every cyclic module is pseudo c∗-injective

In this section, we study rings R in which every cyclic right R-module is
pseudo c∗-injective.

An R-module M is called a C4-module if, whenever A1 and A2 are sub-
modules of M with M = A1 ⊕ A2 and f : A1 → A2 is an R-homomorphism
with ker(f) ≤⊕ A1, we have Im(f) ≤⊕ A2 [5].

Proposition 4.1. Let R be a ring in which every cyclic right R-module is
pseudo c∗-injective and let e and f be orthogonal idempotents of R. Then the
following conditions holds:
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(1) If eaf �= 0 for some a ∈ R, then eafR ⊆⊕ eR.

(2) If fR ∼= eR, then for every 0 �= b ∈ eR, bR contains a nonzero idempotent
of R. In particular rad(eR) = rad(fR) = 0.

(3) If e, f are indecomposable and eaf �= 0 for some a ∈ R, then eR ∼= fR
and they are minimal right ideals of R.

Proof. Let e and f be orthogonal idempotents of R. Then, we have that eR
and fR are orthogonal summands and obtain eR ⊕ fR = (e + f)R. Hence o
eR⊕ fR is a summand of R.

(1) We define g : fR −→ eR by g(fr) = eafr. Clearly, g is a well-defined
non-zero homomorphism with Im(g) = eafR. Set K = Ker(g) and consider
the monomorphism h : fR/K −→ eR defined by h(a + K) = g(a), for all
a ∈ fR. Since every cyclic right R-module is pseudo c∗-injective, (e+f)R/K ∼=
∼= fR/K ⊕ eR is a pseudo c∗-injective module. So eafR = Im(g) = Im(h) is
a direct summand of eR.

(2) Let fR ∼= eR, and b ∈ eR with b �= 0. One can check that b = eb. Now,
if eb(1− e) �= 0, then, by (1), eb(1− e)R ⊆⊕ eR. Since eb(1− e)R ⊆ ebR = bR,
we get bR contains a non-zero idempotent, as required. If eb(1 − e) = 0, then
b = eb = ebe. We see ebeR ⊕ eR ∼= ebeR ⊕ fR = (ebe + f)R and so, by
hypothesis, ebeR ⊕ eR is a C4-module. Consequently, ebeR ⊆⊕ eR and bR
contains a non-zero idempotent, since ebeR = ebR = bR. Now, if K ⊆ eR
is a small submodule of eR and 0 �= k ∈ K, then kR contains a non-zero
idempotent g ∈ R by the first part of the proof, and so gR is small in eR, a
contradiction. Hence rad(eR) = 0. Therefore, rad(fR) = 0.

(3) By (1), we get eafR a direct summand of R, and so eafR = eR is
projective. Therefore, the epimorphism g : fR → eafR given by g(fr) = eafr
splits by the projectivity of eafR. Thus, eR = eafR ∼= fR. Now, if 0 �=
�= b ∈ eR, then bR contains a nonzero idempotent of R by (2) and since eR is
indecomposable bR = eR. Hence eR as well as fR is minimal. �
Corollary 4.2. Let R be a ring in which every cyclic right R-module is pseudo
c∗-injective such that R = C ⊕ A ⊕ B where A ∼= B and C embeds in A ⊕ B.
Then rad(R) = 0.

In particular, if every cyclic right R-module is pseudo c∗-injective such that
R = A⊕B where A ∼= B, then rad(R) = 0.

A ring is called an I-finite ring if it contains no infinite sets of orthogonal
idempotents.

Theorem 4.3. Let R/J(R) be an I-finite ring. Then every cyclic right R-
module is pseudo c∗-injective if and only if R = S ⊕ T , where S is semisimple
artinian and T is a finite direct sum of semilocal rings with no nontrivial idem-
potents in which every cyclic right module is pseudo c∗-injective.
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Proof. Assume that R/J(R) is an I-finite ring. Then R is an I-finite ring, and
so the ring R has an indecomposable decomposition R = e1R⊕e2R⊕· · ·⊕enR,
where ei are pairwise orthogonal primitive idempotents of R. Denote

[etR] =
∑
i

{eiR : eiR ∼= etR}.

Renumbering if necessary, we may write R = [e1R] ⊕ [e2R] ⊕ · · · ⊕ [ekR]. By
Proposition 4.1, each [eiR] is an ideal of R. If [eiR] contains more than one
direct summands, then [eiR] is a simple artinian ring by Proposition 4.1. If
[ejR] consists of exactly one direct summand, then Tj := [ejR] = ejR = ejRej
is a rings with no nontrivial idempotents in which every cyclic right module is
pseudo c∗-injective. Next, we show that each Tj is a semilocal ring. In fact,
we have that R/J(R) is an I-finite ring and obtain that the ring Tj/J(Tj) is
too. Note that ejR is a pseudo c∗-injective module. It follows that Tj/J(Tj)
is a regular ring. We deduce that Tj is a semilocal ring. �
Corollary 4.4. Let R be a semiperfect ring. Then every cyclic right R-module
is pseudo c∗-injective if and only if R = S⊕T , where S is semisimple artinian
and T is a finite direct sum of local rings with no nontrivial idempotents in
which every cyclic right module is pseudo c∗-injective.

We denote by Mn(R) for the n× n matrix ring over R.

Lemma 4.5. Let n ≥ 2. The following are equivalent for a ring R:

(1) Every n-generated R-module is a pseudo c∗-injective module.

(2) Every cyclic Mn(R)-module is a pseudo c∗-injective module.

Proof. Let P = (Rn)R and S = End(PR). Then

HomR(P,−) : NR �→ HomR(SPR, NR)

defines a Morita equivalence between Mod-R and Mod-S with the inverse equiv-
alence −⊗SP : MS �→ M⊗P . For any n-generated R-module N , HomR(P,N)
is a cyclic S-module, and, for any cyclic S-moduleM , M⊗SP is an n-generated
R-module. Moreover, a Morita equivalence preserves the pseudo c∗-injectivity
for modules. Thus, every cyclic S-module is a pseudo c∗-injective module if
and only if every n-generated R-module is a pseudo c∗-injective module. �
Corollary 4.6. The following are equivalent for a ring R:

(1) Every cyclic M2(R)-module is a pseudo c∗-injective module.

(2) Every 2-generated R-module is a pseudo c∗-injective module.

(3) R is semisimple.
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Proof. (1) ⇔ (2) This follows from Lemma 4.5

(3) ⇒ (1) & (2) They are obvious.

(1) & (2) ⇒ (3) First we show that every cyclic right R-module is quasi-
injective. In fact, let M = mR be a cyclic right R-module with m ∈ M . By
hypothesis, the 2-generated right R-module mR ⊕ mR is pseudo c∗-injective,
and so M = mR is quasi-injective, as required. Now, we show that rad(R) = 0.
Clearly, by (1), every cyclic M2(R)-module is a pseudo c∗-injective module.

We have M2(R) =

[
R R
R R

]
=

[
R R
0 0

]
⊕

[
0 0
R R

]
is a direct sum of

two isomorphic right ideals. By Corollary 4.2, rad(M2(R)) = 0 Consequently,
rad(R) = 0 since rad(M2(R)) = M2(rad(R))) = 0. Inasmuch as R has the
property that every cyclic right R-module is quasi-injective and rad(R) = 0,
we infer from [1, Corollary], that R is semisimple. �
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