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Abstract. Cylindrical algebraic decomposition (CAD) is a basic con-
cept in real algebraic geometry, and it has useful applications to deal with
symbolic inequalities. We present a new implementation of CAD in the
SageMath computer algebra system. This is not as fast as some existing
implementations like QEPCAD, but it is more flexible to be embedded in
certain larger calculations. One such application of CAD is a proving pro-
cedure for inequalities involving recursive functions, invented by Gerhold
and Kauers. We present an implementation of this algorithm as well. This
paper also gives an overview with examples about the theory behind the
implemented algorithms.

1. Introduction

Collins invented cylindrical algebraic decomposition (CAD) in 1973 [5]. Its
main motivation was quantifier elimination, i.e. given a quantified formula, it
creates an equivalent formula without quantifiers. CAD has also several other
applications regarding inequalities, some of them are discussed in this paper.
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There are already a few implementations of CAD, including QEPCAD,
which is a free software written in C/C++ by Hong, Brown and others [3];
the proprietrary software Mathematica which contains the built-in command
CylindricalDecomposition implemented by Strzeboński [4]; and Redlog [7] also
has an implementation.

Our attention is on the SageMath computer algebra system (which will be
referred to simply as Sage). It has an optional package named qepcad, which is
an interface to the QEPCAD software and thus provides cylindrical algebraic
decomposition in Sage [11]. That package has a strong emphasis on giving
access to the rich features of QEPCAD, but it is less useful when we want
to manipulate logical formulas and use CAD as a subroutine. For example,
though it provides a way to build quantified logical formulas from Sage expres-
sions, however, to the best of our knowledge, it does not support manipulating
these formulas, and the output of QEPCAD is returned as a string instead
of a mathematical object. Another problem is that unlike e.g. Mathematica’s
implementation, QEPCAD (and Sage’s interface) does not support special ex-
pressions like square roots or fractions in formulas, only polynomials.

In this paper we present a new Sage package for CAD, developed by the
author. It has two modes: it implements CAD on its own, but it can also invoke
QEPCAD if it is installed on the machine. This package (in both modes) solves
the issues mentioned above, though it has fewer capabilities to use QEPCAD’s
special commands. It only uses it as a component for CAD interchangably with
its own implementation.

Moreover, this paper discusses a specific application of CAD: Gerhold and
Kauers invented an algorithm for proving certain types of inequalities involving
recursive sequences [9, 13]. Kauers implemented this algorithm in his package
SumCracker [15], written in Mathematica. We give a new implementation of
this in our Sage package.

The paper is built up as follows. In Section 2, we discuss the core of cylin-
drical algebraic decomposition. Section 3 is about using CAD in formula con-
version (including quantifier elimination). Section 4 is devoted to Gerhold’s
and Kauers’ inequality proving algorithm. In all these sections, first we discuss
the theoretical background with examples, then we present our implementa-
tion briefly. Finally, in Section 5, we compare the CAD implementation with
QEPCAD and give some possible future directions.

The presented Sage package, along with some test cases, is available at
the online version of this article [18]. They were tested in Sage 8.9, on a
machine with Pentium Dual-Core 3 GHz processor and 4 GB RAM. This paper
is indended to be a general overview of the package, the full user documentation
is included in the package as documentation strings, and the implementation
details are described in comments. The package is distributed under the GNU
General Public License 3.
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2. Cylindrical algebraic decomposition

2.1. Definition of CAD

Cylindrical algebraic decomposition is a special decomposition of Rn into
so-called cells, induced by some polynomials. More precisely:

Definition 2.1. A decomposition of Rn is a finite number of nonempty, con-
nected and pairwise disjoint sets, C1, C2, . . . , CN , whose union is Rn. These
sets are called cells.

Definition 2.2. An algebraic decomposition of Rn is a decomposition for which
there exists a finite number of n-variate polynomials p1, p2, . . . , pm which all
have constant sign on each cell, but not on the union of any two adjacent cells.

Definition 2.3. A cylindrical algebraic decomposition (CAD) of Rn is an al-
gebraic decomposition which, when projected to Rn−1, has the following two
properties: any two cells have either the same or disjoint projections, and
the distinct projected cells constitute a cylindrical algebraic decomposition of
Rn−1. A CAD of R0 is its (only) trivial algebraic decomposition.

Example 2.4. For example, the CAD of R2 induced by the single polynomial
x2 + y2 − 1 ∈ R[x, y] consists of the following 13 cells (5 regions, 6 curves and
2 points):

{(x, y) ∈ R2 | x < 1},
{(x, y) ∈ R2 | x = −1 ∧ y < 0},
{(x, y) ∈ R2 | x = −1 ∧ y = 0},
{(x, y) ∈ R2 | x = −1 ∧ y > 0},
{(x, y) ∈ R2 | x > −1 ∧ x < 1 ∧ y < −

√
1− x2},

{(x, y) ∈ R2 | x > −1 ∧ x < 1 ∧ y = −
√
1− x2},

{(x, y) ∈ R2 | x > −1 ∧ x < 1 ∧ y > −
√
1− x2 ∧ y <

√
1− x2},

{(x, y) ∈ R2 | x > −1 ∧ x < 1 ∧ y =
√
1− x2},

{(x, y) ∈ R2 | x > −1 ∧ x < 1 ∧ y >
√
1− x2},

{(x, y) ∈ R2 | x = 1 ∧ y < 0},
{(x, y) ∈ R2 | x = 1 ∧ y = 0},
{(x, y) ∈ R2 | x = 1 ∧ y > 0},
{(x, y) ∈ R2 | x > 1}.
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2.2. CAD algorithm

Now we describe the CAD decomposition algorithm invented by Collins [5].
It takes a finite set of polynomials P ⊆ A[x1, x2, . . . , xn] as input (where A de-
notes the set of real algebraic numbers), and returns the cells of the cylindrical
algebraic decomposition induced by these polynomials.

The skeleton of the algorithm is the following:

1. Find the splitting points along x1, which decompose R to cells (intervals
and points) which are the projection of the final CAD to the line of x1.

2. Pick a sample x1 ∈ A (possibly x1 ∈ Q) from each of these cells.

3. For each cell, substitute the sample x1 to the input to get polynomials in
A[x2, . . . , xn].

4. Construct the CAD recursively for these polynomials in Rn−1.

Of course, the crutial part is the first step, i.e. how to get the splitting
points for x1. We need so small cells that within any given cell, all points
behave basically in the same way, i.e. any sample point can be used to find out
the structure of the whole cell.

For this, we use a CAD projection operator, which transforms a finite subset
of A[x1, . . . , xn−1, xn] to a finite subset of A[x1, . . . , xn−1]. The goal of this
operator is that the roots of the output polynomials contain all “interesting”
points of the input polynomials, i.e. all (x1, . . . , xn−1) for which the input,
viewing them as a set of univariate polynomials in xn, may change their nature.
This may mean that one of the polynomial changes the number of distinct real
roots, or two of them intersect.

For example, a CAD projection operator may project {x2 + y2 + z2 − 1} to
{x2+y2−1}, because the “interesting” points of the unit sphere when projecting
down to the (x, y)-plane are exactly the unit circle. Projecting {x2 + y2 − 1}
further would give {x2 − 1}, or equivalently {x − 1, x + 1}. There are several
different CAD projection operators, which we describe in the next section.

Step 1 of the algorithm above, using a CAD projection operator, can be
implemented as follows. Starting from the input polynomial set P = Pn, use
the CAD projection operator iteratively to get Pn �→ Pn−1 �→ . . . �→ P1, where
each Pi ⊆ A[x1, . . . , xi]. Then the splitting points for x1 will be the roots of P1.
For the recursive CAD decomposition in step 4., when calculating the splitting
points for x2, x3 etc., there is no need to repeat this CAD projection process
again for the new input polynomials, but instead it is enough to substitute the
sample x1 to P2, the sample x1 and x2 to P3 etc. to get univariate polynomials
in x2, x3 etc., whose roots will be the splitting points for those steps.
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2.3. CAD projection operator

Let P = {p1, p2, . . . , pm} ⊆ A[x1, . . . , xn] be a finite set of polynomials in
n variables. We consider them as polynomials in xn over A[x1, . . . , xn−1]. The
CAD projection operator takes P as input, and gives polynomials proj(P) ⊆
A[x1, . . . , xn−1] such that their induced CAD in Rn−1 can be extended to a
valid CAD for P in Rn. Loosely speaking, this means that over any given cell
of the Rn−1-CAD, the polynomials in P behave in a similar way over all points
of that cell. This property is called the delineability of the roots of P over the
cell, and its precise definition and related theorems can be found e.g. in [5,
p. 139]. Basically, the following three problems can prevent delineability:

1. some pi ∈ P changes its degree;

2. some pi ∈ P changes the number of distinct roots while preserving its
degree;

3. two polynomials in P have common roots.

Therefore, a naive approach to address these problems would be to return
the following polynomials as proj(P):

1. the leading coefficients of all pi ∈ P;

2. the discriminants of all pi ∈ P, which is, up to a constant, res(pi, p
�
i);

3. res(pi, pj) for all distinct pairs of polynomials.

But this is not sufficient. For example, if p ∈ P has degree d, but in a one-
dimensional cell, the leading coefficient of p becomes everywhere zero, then
within that cell, problem 1 is independent from the (original) leading coefficient,
but instead depends on the next coefficient. A similar problem arises when
dealing with the resultants. It is zero if and only if the two polynomials have
a common root. It may happen that two polynomials have a common root
everywhere within a one-dimensional cell, and two common roots in exactly
one point of that cell. Then this latter point cannot be detected by resultants.
Therefore we need its generalization, the principal subresultant coefficients:
psck(f, g) = 0 if and only if f and g have at least k + 1 common roots, and
psc0(f, g) = res(f, g). Resultants and principal subresultant coefficients are
described e.g. in [8, Chapter 7.3].

There are several approaches to create a correct CAD projection operator.
The simpliest is Collins’ simple projection operator, which is a brute-force ap-
proach to address the issues mentioned above. Let redl(p) be the lth reductum
of p, i.e. the polynomial obtained from p by removing the l highest powers of
xn. More precisely: red0(p) = p and redl+1(p) = redl(p− lc(p)) where lc(p) is
the leading coefficient of p. Then Collins’ simple projection operator returns
the following polynomials [5, p. 142]:
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1. all coefficients of all pi ∈ P;

2. psck(redl(pi), redl(pi)
′) for all i, l, k;

3. psck
(
redli(pi), redlj (pj)

)
for all i, li, j, lj , k.

This operator simply considers all reducta of the polynomials and all principal
subresultant coefficients. This often results in a huge amount of polynomials,
and the vast majority of them are unneccessary and create superfluously many
cells. However, it is easy to implement.

Collins himself proposed an improved version, noticing that we can stop
taking reductions and psc’s when it is safe to do so [5, p. 176]. For example,
if a coefficient is a nonzero constant, we can stop taking reductions since the
degree will never drop below this coefficient. More generally, if we can prove
that the first few coefficients have no common roots, or even only finitely many
(as individual vanishing points do not cause any problem), then we can stop.
The same simplification applies to the sequence of psc’s.

McCallum reduces the projection operator further, but at the same time,
makes difficulties with the other parts of the algorithm. His proposed projection
is the following [16]:

1. all coefficients of all pi ∈ P (with Collins’ improvement);

2. the discriminants of all pi ∈ P;

3. res(pi, pj) for all distinct pairs of polynomials.

This is almost the same as the naive approach (only the first one differs), but
there are some restrictions about the algorithm to make this valid. First, the
input polynomials must be squarefree and pairwise disjoint. This is not a real
restriction as it can be achieved e.g. by factorization and removing duplicates.
Note that for the earlier projection operators, although factorization is not
neccessary, it may also improve the efficiency of the algorithm. The other
problem with McCallum’s projection is that it works only for well-oriented
input, which means that the polynomials in the input or after projection have
no vertical lines contained in their zero set (i.e. along the last variable), or there
are only finite many of them [16, p. 258], where the latter case is handled by a
modification of the algorithm. Up to three variables, all inputs are well-oriented
[17], and in higher dimensions most inputs fulfil this property either.

Brown improved McCallum’s projection operator even further, removing
the non-leading coefficients of the polynomials, thus making it formally the
same as the naive version. In the same time, it requires further changes in the
CAD algorithm, namely inserting certain individual points into the decompo-
sition which are not roots of any projection polynomials, but are calculated
separately. [1]
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We illustrate the point of improving the projection operator by an example
from [16, Section 7.1]. Let P = {x2 + y2 + z2 − 1, z3 + xz + y} ∈ Q[x, y, z].
Our implementation, which is to be described in the next section, performs as
follows on P using different projection operators:

Projection operator |P2|, |P1|, |P0| Cells Running time
Collins’ simple 2, 6, 30 unknown > 1 hour
Collins’ improved 2, 4, 10 1393 62 sec
McCallum’s 2, 3, 9 971 33 sec

The test with Collins’ simple projection operator did not terminate within
an hour.

2.4. CAD in the package

In our Sage package, the CAD implementation is invoked by the function
cylindrical algebraic decomposition() from cad.sage. It expects a list
of polynomials or a single polynomial. Here is the execution of Example 2.4:

sage: var(’x,y’);

sage: cad = cylindrical_algebraic_decomposition(x^2 + y^2 - 1)

sage: for cell in cad.cells():

print cell.dimension(), cell.sample(), cell.formula()

2 (-2, 0) x < -1

1 (-1, -1) x == -1 /\ y < -sqrt(-x^2 + 1)

0 (-1, 0) x == -1 /\ y == -sqrt(-x^2 + 1)

1 (-1, 1) x == -1 /\ y > -sqrt(-x^2 + 1)

2 (0, -2) x > -1 /\ x < 1 /\ y < -sqrt(-x^2 + 1)

1 (0, -1) x > -1 /\ x < 1 /\ y == -sqrt(-x^2 + 1)

2 (0, 0) x > -1 /\ x < 1 /\ y > -sqrt(-x^2 + 1) /\ y < sqrt(-x^2 + 1)

1 (0, 1) x > -1 /\ x < 1 /\ y == sqrt(-x^2 + 1)

2 (0, 2) x > -1 /\ x < 1 /\ y > sqrt(-x^2 + 1)

1 (1, -1) x == 1 /\ y < -sqrt(-x^2 + 1)

0 (1, 0) x == 1 /\ y == -sqrt(-x^2 + 1)

1 (1, 1) x == 1 /\ y > -sqrt(-x^2 + 1)

2 (2, 0) x > 1

The essence of cylindrical algebraic decomposition is implemented in the
CADCell class (in cad-cell.sage). It represents a single cell of the CAD in Rn,
or any of its projection in Rn−1, . . . ,R0. Each projection CADCell stores the list
of all CADCells in one higher dimension whose projection it is. This recursively
gives a tree of all higher-dimensional cells over this cell. An important method
of CADCell is CADCell. split(), which, for a cell in Rk−1, constructs its
children cells in Rk using the algorithm described in Section 2.2.

The function that puts everything together is cad polys to cells(). First
it generates the projections of the input polynomials iteratively. All polynomi-
als, either from the input or from the projection, are factored, and constant fac-
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tors and duplicates are removed (this is implemented by the PolyFactorList
class in poly.sage). Then, it creates the single cell of R0 as a starting point,
and gerenates the decomposition by calling repeatedly CADCell. split(). It
finally returns the single cell of R0, which then contains the tree of the complete
decomposition.

The package implements three projection operators: the two versions of
Collins’ projection operator and McCallum’s projection. They are all defined
at the end of cad.sage.

3. Formula conversion

Cylindrical algebraic decomposition can be used to handle semi-algebraic
sets, i.e. subsets of Rn described by polynomial equalities and inequalities.
Using CAD, we can convert such a formula into an equivalent form having
a very special structure, which gives useful information about the set, such
as whether it is empty, finite, bounded etc., its dimension, the number of
components, a sample point in each component etc. This formula conversion
itself, which is an application of CAD, is sometimes also called cylindrical
algebraic decomposition [14, 4].

Example 3.1. x2+y2+z2 ≤ 2 is converted by CAD to the following equivalent
formula:

(x = −
√
2 ∧ y = 0 ∧ z = 0) ∨

(x > −
√
2 ∧ x <

√
2 ∧ (

(y = −
√
2− x2 ∧ z = 0) ∨

(y > −
√
2− x2 ∧ y <

√
2− x2 ∧ z ≥ −

√
2− x2 − y2 ∧ z ≤

√
2− x2 − y2) ∨

(y =
√
2− x2 ∧ z = 0)

)) ∨
(x =

√
2 ∧ y = 0 ∧ z = 0)

This form directly gives some information about the set (of course we do
not need CAD for such an easy example, this is just an illustration):

• it has points only for −√
2 ≤ x ≤ √

2;

• for either of x = ±√
2, there is exactly one point in the set;

• for −√
2 < x <

√
2, there are infinitely many possible y values;

• for any such x, the formula directly gives the possible y values, and for
any such x and y, it gives the possible z values;
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• the set is three-dimensional;

• the set is bounded;

• its exact bounding box is [−√
2,
√
2]3.

CAD can also deal with formulas with quantifiers, and convert them to
equivalent quantifier-free form. This is called quantifier elimination, and it is
one of the major applications of CAD.

Example 3.2. The formula ∃y : ∃z : x2 + y2 + z2 ≤ 2 is converted to:

x ≥ −
√
2 ∧ x ≤

√
2.

Now we define the structure of the formulas precisely. The input has a very
general form:

Definition 3.3. A Tarski formula is a logical formula consisting of variables,
rational numbers, three arithmetic operators (+, −, ·), relational symbols (<,
>, ≤, ≥, =, �=), logical operators (∧, ∨, ¬, ⇒, ⇐, ⇔), logical constants
(true, false) and quantifiers (∀, ∃) built according to the standard mathematical
syntax.

In short, Tarski formulas are logical combination of polynomial equalities
and inequalities such as ∃x : x > 1 ∧ (x+ 2)2y3 > x− y2. The output of CAD
is an equivalent formula of the following special form [14]:

Definition 3.4. A CAD formula in n variables x1, x2, . . . , xn is of the form
(φ1 ∧ ψ1) ∨ (φ2 ∧ ψ2) ∨ . . . ∨ (φm ∧ ψm), where

1. φi are univariate in x1;

2. each φi describes a non-empty interval or point of R, bounded by algebraic
numbers (examples: x1 > α, x1 ≤ β, x1 ≥ α ∧ x1 < β, x1 = α, true etc.,
where α < β are algebraic numbers);

3. all φi ∧ φj are inconsistent for i �= j;

4. and all ψi, when x1 is replaced by any γ algebraic number for which φi(γ)
holds, is a satisfiable CAD formula in x2, . . . , xn.

A CAD formula in 0 variables is either true or false.

Note that a CAD formula can be a logical constant also for n > 0: if m = 0,
i.e. for disjunction of length zero, it is considered constant false; if m = 1 and
φ1 = true recursively, we get constant true. Conversely, the only unsatisfiable
CAD formula is the constant false, so converting to a CAD formula gives a
satisfiability test. The constant true is not so simple, e.g. x ≥ 1∨ (x < 1∧ (y >
x ∨ y ≤ x)) is a CAD formula equivalent to true, but such formulas can be
easily simplified to true. We assume that the CAD conversion implementation
makes this simplification automatically.
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3.1. Conversion algorithm

How can we convert a Tarski formula to a CAD formula using cylindrical
algebraic decomposition (as defined in Definition 2.3)?

First, consider Example 2.4 about the CAD of x2 + y2 − 1, and notice that
all cells were described by CAD formulas. It can be done in general, i.e. in any
given CAD decomposition, it is straightforward to describe the cells by CAD
formulas. Using this, we can convert a quantifier-free Tarski formula to a CAD
formula by the following steps:

1. Extract all polynomials from the Tarski formula after reducing all atomic
formulas to zero on the right (e.g. extract f(x)− g(x) from f(x) < g(x)).

2. Calculate the CAD decomposition induced by these polynomials.

3. Select those cells which satisfy the input formula by evaluating it on one
sample point in each cell.

4. Construct the CAD formula for these cells.

5. Combine these formulas by disjunction and simplify them using the rule
of distributivity.

Note that due to the sign-invariance of the CAD (by Definition 2.2), the input
formula has constant truth value on each cell, so Step 3 indeed works. The
simplification in Step 5 ensures requirement 3 of Definition 3.4. Note that
Steps 4-5 can be combined by creating the simplified formula directly.

It is not hard to extend the algorithm to quantified Tarski formulas. It
must be ensured that the variables are ordered so that the quantified variables
come last (i.e. deepest in the CAD tree), and then it is straightforward to
evaluate the cells according to the quantifiers, and the formula is built for the
free variables as described above.

When CAD is used to convert formulas, especially quantified formulas, lazy
evaluation can optimize the process by creating only those cells which con-
tribute to the result, thus creating only a partial decomposition. If the formula
certainly has a constant truth value on some cell, there is no need to calculate
its subcells. For example, if the input formula is like x1 > 1 ∧ φ, then the cells
x1 < 1 and x1 = 1 need no further subdivision.

3.2. More about CAD formula

Recall Example 3.1, which converted x2 + y2 + z2 ≤ 2 to a CAD formula.
The result contained square roots, which showed that a CAD formula is not
neccessarily a Tarski formula. It is a problem if we want to feed an output
CAD formula as input for another CAD (in a slightly modified form), as we
will want to do in Section 4.
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But there is another problem: in general, not even radicals are sufficient to
express roots of polynomials. For example, consider the input formula x6+y6 <
< y. For arbitrary x, the solution for y cannot be expressed in terms of radicals.
We can formally solve this problem by introducing a new notation:

Definition 3.5. For a polynomial p ∈ R[x1, x2, . . . , xn, x], let rootof(p, x, i)
be a function in x1, x2, . . . , xn whose value is the ith distinct real root of
p(x1, x2, . . . , xn, x) as a univariate polynomial in x, with the natural order-
ing of the roots, counted from 0. The value is undefined for negative i or for
those x1, x2, . . . , xn where the polynomials has ≤ i distinct real roots.

(This notation is based on [2, Definition 17.], but slightly modified.)

Example 3.6.

rootof(x2 + y2 − 1, y, 0) = −
√

1− x2 (−1 ≤ x ≤ 1)

rootof(x2 + y2 − 1, y, 1) = +
√

1− x2 (−1 < x < 1)

This notation completes the notion of CAD formula.

Example 3.7. x6 + y6 < y can be converted to the following equivalent CAD
formula:

x > −
6
√
5

5
√
6
∧ x <

6
√
5

5
√
6
∧

∧ y > rootof(x6 + y6 − y, y, 0) ∧ y < rootof(x6 + y6 − y, y, 1).

But this still does not solve the problem that a CAD formula is not a Tarski
formula. For this, we generalize CAD formulas to allow implicit expressions
(cf. Definition 3.4):

Definition 3.8. A generalized CAD formula in n variables x1, x2, . . . , xn is of
the form (φ1 ∧ ψ1) ∨ (φ2 ∧ ψ2) ∨ . . . ∨ (φm ∧ ψm), where

1. φi are univariate in x1;

2. each φi describes a non-empty subset of R by logical combinations of
equalities and inequalities involving only algebraic numbers (e.g. x2

1 +
αx1 > β);

3. all φi ∧ φj are inconsistent for i �= j;

4. and all ψi, when x1 is replaced by any γ algebraic number for which φi(γ)
holds, is a satisfiable generalized CAD formula in x2, . . . , xn.

A generalized CAD formula in 0 variables is either true or false.
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Note that the difference from the CAD formula is that φi are not neccessarily
linear. This allows the elimination of radicals and rootof-expressions:

Definition 3.9. A polynomial CAD formula is a generalized CAD formula
which contains only polynomial expressions.

Now a polynomial CAD formula is also a Tarski formula.

Example 3.10. x6+y6 < y (cf. Example 3.7) can be converted to the following
polynomial CAD formula:

x > −
6
√
5

5
√
6
∧ x <

6
√
5

5
√
6
∧ x6 + y6 < y,

or equivalently:

x30 <
55

66
∧ x6 + y6 < y.

Example 3.11. x2+y2+z2 ≤ 2 has the following equivalent polynomial CAD
formula:

(x2 = 2 ∧ y = 0 ∧ z = 0) ∨
(x2 < 2 ∧ (

(x2 + y2 = 2 ∧ z = 0) ∨
(x2 + y2 < 2 ∧ x2 + y2 + z2 ≤ 2)

))

Compared to the equivalent CAD formula in Example 3.1, most information
can still be extracted from this, but in a less explicit way, so the exact values
can be determined by finding roots of univariate polynomials.

Creating a polynomial CAD formula is much more difficult than creating
a CAD formula. The basic idea is to try to use the existing polynomials, i.e.
from the input and its projections, maybe after factorization. On each level,
we try to characterize each cell by the signs of the available polynomials. Or
rather, not neccessarily individual cells, but combination of cells whose subfor-
mulas are identical. E.g. the cells x = −√

2 and x =
√
2 in the example above

could be combined, because they both have the subformula y = 0∧ z = 0, and
their common characterization is that x2 − 2 has zero sign. If these two cells
had different subformula, they would need to be differentiated by introducing
a new polynomial, such as x, whose sign decides between the two. A CAD is
called projection definable if the available polynomials are sufficient to create a
polynomial CAD formula. If not, Brown developed an algorithm [2, Chapter 4.]
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that calculates the neccessary new polynomials to be added, keeping their num-
ber as low as possible. Its basic tool is taking derivatives, e.g. x above is (up to
a constant) the derivative of x2 − 2. Practical experiences show however that
most CAD’s are projection definable, so an implementation might choose not
to implement Brown’s algorithm, making the formula conversion only partial.
An interesting tradeoff is that the better (i.e. smaller) the projection operator
we use, the more likely that we get a projection-undefinable CAD is, because
we have less available projection polynomials.

3.3. Extended Tarski formula

The algorithm described so far expects a Tarski formula as input, i.e. logical
combination of polynomial equalities and inequalities (Definition 3.3). But we
can extend the formula conversion to the following more general input:

Definition 3.12. An extended Tarski formula is a logical formula consisting
of variables, rational numbers, the four arithmetic operators (+, −, ·, /), the
mathematical functions min, max, absolute value, square root and nth root,
relational symbols (<, >, ≤, ≥, =, �=), logical operators (∧, ∨, ¬, ⇒, ⇐,
⇔), logical constants (true, false) and quantifiers (∀, ∃) built according to the
standard mathematical syntax.

(Note that this notion is different from the extended Tarski formula in
[2, Definition 18.], which is used by QEPCAD.)

Note that the difference from the Tarski formula is that the extended version
supports wider range of mathematical functions than just polynomials. It does
not make the CAD algorithm itself any harder, because extended Tarski for-
mulas can be converted to Tarski formulas in a preprocessing step, as described
below.

A rational function can be simply multiplied by the common denominator,
but special care must be taken to the sign. For example:

A/B ≥ 0 �−→ (A ≥ 0 ∧B > 0) ∨ (A ≤ 0 ∧B < 0).

The functions min and max can be removed as follows. For example:

f(max(A,B)) > 0 �−→ (A ≥ B ∧ f(A) > 0) ∨ (B ≥ A ∧ f(B) > 0).

Simplier formula can be obtained if f can be proved to be monotonic, e.g. if f
is monotically increasing:

f(max(A,B)) > 0 �−→ f(A) > 0 ∨ f(B) > 0.

The expression |A| can be simply replaced by max(A,−A).
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Square roots and nth roots are handled as follows. The general solution is
to introduce a new variable, e.g.:

f(
n
√
A) > 0 �−→ ∃z : zn = A ∧ z ≥ 0 ∧ f(z) > 0

if n is even, otherwise the z ≥ 0 part is omitted. The problem is that the
CAD is very sensitive to the number of variables, its worst-case complexity
is doubly exponential in it, so it is preferable to avoid adding new variables
whenever possible. For this, we first try to rewrite the expression as follows:
A n
√
B+C n

√
D > 0 (the relational symbol may differ), where A and C contains

no roots. This can be converted to rootless formulas of A, B, C and D. If
n is odd, it is simply equivalent to AnB + CnD > 0. For even n, it is more
complicated, because it depends on the sign of A, B, C and D. For example:

x
√
y + (y − x) > 0 �−→ y ≥ 0 ∧ ((x > 0 ∧ (y − x > 0 ∨ x2y > (y − x)2)) ∨

(x ≤ 0 ∧ y − x > 0 ∧ x2y < (y − x)2)).

3.4. Formula conversion in the package

In the package, the CAD formula conversion is invoked by the same function
as CAD itself, cylindrical algebraic decomposition(). If it gets a logical
formula as an input, it converts it to an the equivalent CAD formula. For
example:

sage: var(’x,y,z’)

sage: cylindrical_algebraic_decomposition(x^2 + y^2 <= 2)

(x == -sqrt(2) /\ y == -sqrt(-x^2 + 2)) \/ (x > -sqrt(2) /\

x < sqrt(2) /\ y >= -sqrt(-x^2 + 2) /\ y <= sqrt(-x^2 + 2)) \/

(x == sqrt(2) /\ y == -sqrt(-x^2 + 2))

We get a polynomial CAD formula using the output="poly" parameter:

sage: var(’x,y,z’)

sage: cylindrical_algebraic_decomposition(x^2 + y^2 <= 2, output="poly")

(x^2 == 2 /\ y^2 == -x^2 + 2) \/ (x^2 < 2 /\ y^2 <= -x^2 + 2)

Compound formulas can be created using the logic and(), logic or()

and logic not() functions:

sage: cylindrical_algebraic_decomposition(logic_and(x^2 + y^2 < 1,

x^3 == y^2, 2*x <= 1))

(x == 0 /\ y == -sqrt(x^3)) \/ (x > 0 /\ x <= (1/2) /\

(y == -sqrt(x^3) \/ y == sqrt(x^3)))

The package can handle extended Tarski formulas:
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sage: cylindrical_algebraic_decomposition(sqrt(x) + sqrt(y) >= 1)

(x >= 0 /\ x <= 1 /\ y >= x - 2*sqrt(x) + 1) \/ (x > 1 /\ y >= 0)

Quantified formulas can be formed by logic forall()/logic exists():

sage: cylindrical_algebraic_decomposition(logic_exists(y,

logic_and(x^2 + y^2 == 3, x + y < 0)))

x >= -sqrt(3) /\ x < 1/2*sqrt(6)

sage: cylindrical_algebraic_decomposition(logic_exists(x,

logic_forall(y, x^2 - y^2 < 1)))

True

sage: cylindrical_algebraic_decomposition(logic_exists(x,

logic_forall(y, x^2 - y^2 < z)))

z > 0

When cylindrical algebraic decomposition() gets a formula, it calls
cad formula reduce() from cad.sage to do the CAD formula conversion. It
first calls convert formula to poly() from formula.sage to convert the in-
put from extended Tarski formula to Tarski formula as described in Section 3.3.
Then it executes the algorithm in Section 3.1, using cad polys to cells()

for the decomposition. The CAD formula or the polynomial CAD formula
is generated recursively by the functions CADCell. to rooty formula() and
CADCell. to poly formula(), respectively. The latter is incomplete: only the
projection-definable case is implemented (see Section 3.2), but it turns out that
it suffices for most problems.

This package provides a way to express logical formulas in Sage, which
has no built-in types for that. We define the following classes in logic.sage:
Logic (base class), LogicConstant (true or false), LogicRelation (e.g. x2y >
(x − 1)2), LogicChain (∧ or ∨) and LogicQuantified. These classes should
not be used directly, instead the following functions and constants should
be used: logic true, logic false, logic and(), logic or(), logic not(),
logic implies(), logic forall() and logic exists(). More details can be
found in the documentation strings in logic.sage.

In addition to providing a CAD implementation, this package can also use
QEPCAD as an external tool to do the CAD, as mentioned in the introduction.
In this way, we can combine the power of QEPCAD with some features of this
package, e.g. we can give an input formula with square roots, which QEPCAD is
unable to handle on its own, but this package can convert it to a Tarski formula
and pass it to QEPCAD, and then convert the result to a Logic object. In order
to use QEPCAD instead of the built-in implementation, we need to pass the pa-
rameter algorithm="qepcad" to cylindrical algebraic decomposition().
This requires QEPCAD to be installed on the machine and be accessible on
the command line via the qepcad command. For example:
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sage: cylindrical_algebraic_decomposition(logic_exists(z,

x == sqrt(1 - y^2 - z^2)), algorithm="qepcad");

x >= 0 /\ x^2 + y^2 - 1 <= 0

Note that QEPCAD returns the formula in a different format than the built-in
implementation. It produces neither a CAD formula nor a polynomial CAD
formula, but instead by default it tries to return as simple formula as possible,
using polynomials only.

4. Inequality proving

An interesting application of CAD is a proving procedure of inequalities
involving recursive functions like factorials and sums, an algorithm invented by
Gerhold and Kauers [9, 13]. A simple example to illustrate the algorithm is
Bernoulli’s inequality:

1 + nx ≤ (1 + x)n (x ≥ −1, n ∈ N).

The inequality on its own lies outside of the scope of CAD, since it contains
non-polynomial expressions (and does not even fit into our notion of extended
Tarski formulas), because the exponent n is a variable. The idea is to use
induction on n, as we would do by hand, but prove the steps by CAD. After
checking the trivial n = 0 case, we need to prove the following:

n ≥ 0 ∧ x ≥ −1 ∧ 1 + nx ≤ (1 + x)n =⇒ 1 + (n+ 1)x ≤ (1 + x)n+1.

At first glance it seems that we did not make any progress, because we still
have the non-polynomial expressions. But here comes the trick. We assign
new variables to the non-polynomial expressions, so let y := (1+x)n. Now the
formula becomes:

n ≥ 0 ∧ x ≥ −1 ∧ 1 + nx ≤ y =⇒ 1 + (n+ 1)x ≤ (1 + x)y,

and now we can apply CAD, which returns true, thus proves the statement.

Note that if we had introduced the new variable right in the original in-
equality, we would have got n ≥ 0∧ x ≥ −1∧ 1+ nx ≤ y, and although that is
a Tarski formula, CAD is not able to prove that, because it has no way to know
the relation between y and x. In the induction formula however, the meaning
of y appeared when we expressed the shifted version of y as (1+x)y. This illus-
trates the requirement on the original formula: the recursive expressions must
have a recurrence relation in a form that is acceptable by our CAD. These are
called by Kauers nested polynomially recurrent sequences [12] (though we may
allow non-polynomial expressions in the scope of the extended Tarski formulas,
but as we have seen before, it is equivalent to a Tarski formula).
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Another example of a nested polynomially recurrent sequence is in the fol-
lowing inequality (from [9, Section 4]):

n!
n∑

k=0

(−1)k

k!
> 0 (n ≥ 2).

We introduce new variables: x := n!, y :=
∑n

k=0(−1)k/k! along with the shifted
versions:

x′ = (n+ 1)! = (n+ 1)x,

y′ =
n+1∑
k=0

(−1)k

k!
= y +

(−1)n+1

(n+ 1)!
= y +

z

(n+ 1)x

with the new variable z = (−1)n+1, noting that z′ = −z.

The initial case (n = 2) is again trivial (though in general, we may need
to use CAD for the initial case as well). The induction step however is not as
simple as in the previous example. If we try to prove the following by CAD:

n ≥ 2 ∧ xy > 0 =⇒ (n+ 1)x

(
y +

z

(n+ 1)x

)
> 0,

we get back a similar formula instead of the desired true. This means that the
formula still fails to hold for some x, y, z ∈ R, ignoring their meaning. It is not
so surprising, since we did not use the recurrence relation of z, for instance. To
use that, we need to go one step further, i.e. basically do a two-step induction.
We do that in an optimized way, by using the output of the above CAD, say
φ. First we check φ for n = 0 (trivial), then the following:

n ≥ 2 ∧ xy > 0 ∧ φ =⇒ φ′,

where φ′ is the shifted version of φ, i.e. all variables are replaced by their shifted
version. Executing CAD on this input, it finally gives true, proving the original
inequality.

The algorithm in general is the following [9, Section 3.]. Assume that the
input is a formula involving nested polynomially recurrent sequences in n, and
it is to be proved for integers n ≥ n0.

1. Identify all recursive expressions in the input, introduce new variables for
each one, and let φ be the resulting extended Tarski formula. Generate
also the shifted versions of the variables.

2. ψ := (n ≥ n0)

3. While φ �= true do
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(a) Apply CAD to φ substituted at n = n0. If the result is not true,
return false (the statement is refuted).

(b) ψ := ψ ∧ φ

(c) φ = CAD(ψ =⇒ φ′)

4. Return true (the statement is proved).

Note that there is no guarantee that the algorithm terminates, but if it does
so, the result is always correct.

4.1. The package

This algorithm is implemented by try to prove() in ineq.sage. E.g. the
previous example can be proved like this:

try_to_prove(factorial(n) * sum((-1)^k/factorial(k), k, 0, n) > 0, n, 2);

The last two parameters tell that the induction is in n starting from 2.

It is also possible to define new recursive functions. The following example
defines the Fibonacci polynomial:

rec = Recursifier(n);

function("fibpol", nargs=2);

rec.add_recurrence([

fibpol(n+1, x) == x*fibpol(n, x) + fibpol(n-1, x),

fibpol(0, x) == 0, fibpol(1, x) == 1

]);

We can use this to prove an inequality from [9]:

try_to_prove(fibpol(n, x)^2 <= (x^2 + 1)^2*(x^2 + 2)^(n-3), n, 3, rec=rec);

In ineq.sage, there are lots of other tested examples. Many of them are
from [9], e.g.:

1

4n
<

(
2n
n

)2
16n

<
1

3n+ 1
(n ≥ 2)

√
n− 3

4
≤ Rn − 1

2
≤

√
n+

1

4

R1 := 1, Rn+1 := 1 + n/Rn (n ≥ 1)

Inequalities like A ≤ B ≤ C must be written as A ≤ B ∧ B ≤ C. Binomial
coefficients must be expanded to factorials.

We can also prove a bit more general version of Bernoulli’s inequality:

1 + nx ≤ (1 + x)n (x ≥ −2, n ∈ N).
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Interestingly, the x ≥ −1 case needed only one step of the algorithm, but the
x ≥ −2 case requires two steps.

Another proven inequality is about the Fibonacci numbers from [6]:

2
(
F 4
n + F 4

n+1 + F 4
n+2

)( 1

F 2
n

+
1

F 2
n+1

+
1

F 2
n+2

)2

> 100 (n ≥ 1)

It is interesting that the algorithm does not terminate on this inequality on its
own, but it does so when we prepend the trivial condition Fn > 0 ∧ Fn+1 >
> 0 =⇒ . . ..

4.2. Recursifier

An important part of the implementation is the Recursifier class in
recur.sage. It performs Step 1 of the algorithm, i.e. it takes a formula with
recursive functions as an input, substitutes variables to the non-Tarski parts,
and stores their recurrence relations. For example (cf. beginning of Section 4):

sage: var(’n,x’);

sage: rec = Recursifier(n);

sage: ineq = rec.recursify(1 + n*x <= (x + 1)^n); ineq

a*b + 1 <= c

sage: for v in rec.variables():

....: print v, "->", rec.shift(v);

a -> a + 1

b -> b

c -> (b + 1)*c

sage: rec.shift(ineq);

(a + 1)*b + 1 <= (b + 1)*c

Recursifier walks through the expression tree of the input to search for
non-Tarski subexpressions, and tries to find a recurrence relation for them. It
uses a set of known recursive functions, including those given by the user in
rec.add recurrence() (see the example of fibpol above). Built-in recursive
functions like n! and an, but also

∑n
k=a f(k) and

∏n
k=a f(k), are defined simi-

larly in init known recurrences(). Parameters of the recursive functions can
be, apart from simply n, also an+ b with a ≥ 0 and b integer constants. Some
examples that Recursifier cannot handle and returns error for: nn, (n2)!,

22
n

,
∑n

k=0 nk,
∑0

k=−n k.

5. Final words

The package introduced in this paper provides a new implementation of
cylindrical algebraic decomposition, and also of the algorithm of Gerhold and
Kauers. As we have shown, it is capable of solving several problems involving
inequalities in a user-friendly manner.
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5.1. Comparison with QEPCAD

Now we compare the CAD implementation of this package with QEPCAD
[3] and its already existing Sage interface [11].

First, we compare them by running time on some examples (they both use
McCallum’s projection, and QEPCAD is invoked through our package):

Input Package QEPCAD
x2 + y2 < 1 ∧ x3 = y2 0.27 s 0.46 s
(x− 1)2 + (y − 1)2 + (z − 1)2 ≤ 1 ∧ xyz = 1 3.89 s 0.51 s
∀x : ∃y : x2 + xy + b > 0 ∧ ay2 + b+ x ≤ 0 6.56 s 0.48 s
∀x : x4 + ax3 + bx2 + cx+ d > 0 1.97 s 0.90 s

QEPCAD is clearly faster, partly because it is written in C, and also be-
cause it has more optimized algorithms. But there is an overhead of invoking
QEPCAD as an external application, which makes it slower for small examples.

An other advantage of QEPCAD is that it has a great variety of options to
customize the algorithm (e.g. six different projection operators are available).

Our package has other advantages, for example it has cleaner code, and it
is written in a high-level language, Sage (while QEPCAD is written in C). This
makes it easier to modify, extend and optimize later.

QEPCAD is an interactive command-line application, where the user enters
the input and gets back the output as a string in QEPCAD’s own syntax.
The existing Sage interface wraps it into a Sage function, but it still returns
the output as a string. Our implementation however provides a flexible and
convertible Sage type for the input and the output, so it can be used as a CAD
subroutine in larger calculations, such as the algorithm of Gerhold and Kauers.

The input of QEPCAD (and its Sage interface) must be a polynomial for-
mula (more precisely, a Tarski formula, see Definition 3.3), while our package
has a much wider domain, and accepts e.g. fractions and roots in the input (see
Section 3.3). This package returns the output in a very structured form (see
Definiton 3.4 and 3.9), which allows many properties of the set to be obtained
mechanically (see Example 3.1). QEPCAD has a different approach, it tries to
return as short formula as possible.

5.2. Future improvements

In the future, we consider the following improvements and optimizations
for the presented package:

• Implement better projection operators like Brown’s improvement (see
Section 2.3).
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• Complete the implementation of generating polynomial CAD formula,
i.e. Brown’s algorithm to introduce new polynomials (see Section 3.2).

• Examine whether the CAD implementation can be optimized by using
precomputed number fields instead of Sage’s general algebraic number
type (AA).

• Improve the interface for QEPCAD, e.g. by giving more access to its
special functionality, and handling error messages properly.
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