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Abstract. In article [14] we have shown that during the downrun part
of the elliptic curve primality proving algorithm, the expected number of
curve orders for a given probable prime grows asymptotically as the square
root of the limit until we take the negative fundamental discriminants,
even if these discriminants are smooth. In this article, based on a heuristic
assumption, we are going to show that this behaviour is still expectable if
we only use those smooth negative fundamental discriminants which are
quadratic residues modulo the tested probable prime number.

1. Introduction

The elliptic curve primality proving method, which is invented by Gold-
wasser and Kilian [8] then rendered useful in pactice by Atkin and Morain [2]
is a recursive procedure, during which one computes a monotone decreasing
sequence of probable primes in a step called the “downrun.”
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During the computation of the subsequent probable primes, the algorithm
attempts to obtain elliptic curve orders with the aid of negative fundamental
discriminants. If the current probable prime is n, then one verifies that

(D|n) = 1 and (n|p) = 1(1.1)

holds for every p prime factor of a given D discriminant. If these requirements
are satisfied, then one calculates the elliptic curve orders using the given dis-
criminant. The probability of success during this step is driven by the h(D)
class number. Hence, the expected number of curve orders for a given n prime
can be calculated as

∑
−d(n)≤D≤−7

1

h(D)
(1.2)

where d(n) is a limit depending on n. The authors of [4] asked that what kind
of asymptotic behaviour does this sum shows when the D discriminants are
smooth and they satisfy requirements (1.1).

In article [14] we have showed that the expected number of curve orders
behaves asymptotically as the square root of the limit d(n), and showed sepa-
rately that this behaviour is still present when the applied negative fundamental
discriminants are smooth. The two statements can be joined as follows.

Proposition 1. For every ε > 0, there exist c1, c2 positive real constants such
that, for every large enough d one has

c1d
1/2−ε ≤

∑
−d≤D≤−7

1

h(D)
≤ c2d

1/2+ε

where D runs over the set of dδ-smooth negative fundamental discriminants,
where δ > 0.

Note that we have used a limit d in place of the previously mentioned limit
d(n). This is because the n probable prime doesn’t have an effect on the sum
while we don’t include requirements (1.1) into it.

Now we are going to include the (D|n) = 1 condition into expression (1.2).
Because of this new condition, we have to use d(n) instead of d. It is sufficient
to chose a strictly monotone increasing function for d(n), because this way,
by choosing a large enough n prime, we will be able to use the results which
require a large enough d limit.

Another assumption is that d(n) < n should hold, but this is not a troubling
requirement as d(n) should be taken as lnα n where an α ∈ (0, 2] suffices, see
article [4]. (It worth mentioning that the optimal value of α depends on the
factorization strategy which we apply during the downrun.)



ECPP: Heuristic on the expected number of curve orders 193

2. The heuristic

For the rest of the article we are going to assume that n is an odd prime. We
start by including the (D|n) = 1 condition into expression (1.2), and transform
it as �

−d(n)≤D≤−7
(D|n)=1

1

h(D)
=

�
−d(n)≤D≤−7

�
1 +

�
D

n

��
1

2h(D)

so when the Legendre symbol is minus one, then the given term disappears,
otherwise we multiply the given term with two. This is the reason why we
have included 2 in the denominator of every term. (Based on the requirements
posed on n and d(n), the (D|n) = 0 case cannot arise in the sum.) We can
split this finite sum as

1

2

⎛
⎝ �

−d(n)≤D≤−7

1

h(D)
+

�
−d(n)≤D≤−7

�
D

n

�
1

h(D)

⎞
⎠(2.1)

where the behaviour of the first sum is known. Handling the second sum seems
unmanagable because of the nature of the Legendre symbol, so we will live with
a heuristic assumption in order to be able to guess its value. If n is an odd
prime, then half of the

�
1

n

�
,

�
2

n

�
, . . . ,

�
n− 1

n

�

sequence takes the value of 1, while the rest takes the value of −1, see the-
orem 9.1 in Apostol [1]. Based on this, we are going to handle the values of
the Legendre symbol like they are independent and identically distributed ran-
dom variables, and they are forming a sequence with Rademacher distribution.
(A random variable X has Rademacher distribution if P (X = ±1) = 1/2
holds.)

If we live with this heuristic assumption, then we can utilise the following
inequality, see Haagerup [9].

Theorem 1. (Khintchine inequality.) Let {ηn}Nn=1 be mutually independent
random variables with Rademacher distribution. Let 0 < p < ∞ and x1, . . . , xN

be real numbers. Then

Ap

�
N�

n=1

|xn|2
�1/2

≤ E

������
N�

n=1

ηnxn

�����
p�1/p

≤ Bp

�
N�

n=1

|xn|2
�1/2

for some real constants Ap, Bp > 0 depending only on p, where E(·) denotes
the mean of a random variable.
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For more information regarding the size of the constants Ap and Bp in the
theorem, see the article of Haagerup [9]. Combining the previously described
heuristic together with this theorem, we are going to verify the following propo-
sition.

Heuristic proposition 1. Let d : N → R+ be a strictly monotone increasing
function which is in o(n). If n is a large enough odd prime, then for every
ε > 0, there exist c1, c2 positive real constants such that one has

c1d(n)
1/2−ε ≤

∑
−d(n)≤D≤−7

(D|n)=1

1

h(D)
≤ c2d(n)

1/2+ε

where D runs over the set of d(n)δ-smooth negative fundamental discriminants,
where δ > 0.

3. Proofs

Our goal now is to bound the value of the second sum in expression (2.1).
By combining our heuristic with the inequalities given in theorem 1 we note
that we have to bound

∑
−d≤D≤−7

1

|h(D)|2(3.1)

essentially. We are going to search for an appropriate lower bound for h(D), so
we can give an upper bound for the sum (3.1). The most fundamental result
in this area is from Siegel [15], which states, that for every ε > 0, there exists
a cε positive constant, such that cε|D|1/2−ε < h(D) holds. Based on this,
expression (3.1) is less than or equal to

1

c2ε

∑
−d≤D≤−7

1

|D|1−2ε
(3.2)

which we are going to examine first. Either by using

∑
n≤x

1

ns
=

x1−s

1− s
+ ζ(s) +O(x−s)

when s > 0 and s �= 1, see theorem 3.2 in Apostol [1], or by approximating
from above with the

1

c2ε

d∫

6

1

x1−2ε
dx
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definite integral, one can see that expression (3.2) behaves as O(d2ε) asymptot-
ically. Because the number of negative fundamental discriminant up to a given
limit is similar to the number of square-free integers, and because the number
of square-free integers up to an x > 0 bound can be approximated with

6

π2
x+O(

√
x)

see for example page 130 of Nagell [13], it seems that we cannot squeeze out a
better asymptotic from the sum by using the result of Siegel, so we have to use
more subtle results. For a χ Dirichlet character define the Dirichlet L-series as

L(s, χ) :=
∞∑

n=1

χ(n)

ns

when �(s) > 0. (Regarding Dirichlet characters and L-series, see chapter 6
of Apostol [1].) It is known due to Dirichlet, that when χ(n) := (D|n) where
D < −4 is a negative discriminant, then

h(D) =

√|D|
π

L(1, χ)(3.3)

holds, see section 5.3.3 of Cohen [6]. Efficient lower bounds can be given for
the value of L(1, χ), see Tatuzawa [16], Hoffstein [10], Ji and Lu [11] and finally
the following result from Chen [5].

Theorem 2. (Chen) Let 0 < ε < 1/(6 ln 10) and χ be a real primitive Dirichlet
character modulo k with k > e1/ε. Then, with at most one exception,

L(1, χ) > min

{
1

7.732 ln k
,
1.5 · 106ε

kε

}

Using these results, the authors of [7] gave finer lower bounds for h(D).
Their arXiv article is marked as a preliminary version at the time of the writing
of this paper, so we present a proof for their result.

Lemma 1. For every large enough D negative fundamental discriminant,

h(D) > c

√|D|
ln |D|

holds, where c is a real positive constant.

Proof. Let ε := 1/ ln |D|, and χ(n) := (D|n), which is a real primitive Dirich-
let character. Solving the inequality posed on ε, we get that we can apply
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Theorem 2, if 106 < |D| holds. Let us assume that this inequality is satisfied,
then we have that

L(1, χ) > min

{
1

7.732 ln |D| ,
1.5 · 106
e ln |D|

}

with at most one exception. Using this in equality (3.3), we get our result. �

Lemma 2. For every large enough positive d one has

∑
−d≤D≤−7

1

|h(D)|2 ∈ O(ln3 d)

where D runs over the negative fundamental discriminants.

Proof. Chose a d > 106, see proof of Lemma 1. Split the sum into two parts
as

∑
−d≤D<−106

1

|h(D)|2 +
∑

−106≤D≤−7

1

|h(D)|2(3.4)

where the value of the second sum can be viewed as a δ constant, and we can
use the lower bound from Lemma 1 in the terms in the first sum. By these, we
have that expression (3.4) is smaller than or equal to

δ + c
∑

−d≤D<−106

ln2 |D|
|D| ≤ δ + c

∫ d

1

ln2 x

x
dx(3.5)

where the expression on the right hand side is in O(ln3 d). �

It’s worth noting that if one assumes the validity of the Generalized Rie-
mann Hypothesis, then it can be shown that

h(D) ∈ Ω

( √|D|
ln ln |D|

)

holds, see Littlewood [12]. Using this result one can prove that expression (3.1)
behaves as O(ln d) asymptotically. For more results concerning L(1, χ), see [3].

Proof of the Heuristic proposition 1. We required that d(n) ∈ o(n) should
be a strictly monotone increasing function, so for large enough n, the bounds
given in Proposition 1 will still hold for the first sum in expression (2.1), because
d(n) will be large enough.

Based on our heuristic assumption, and Lemma 2, we can apply Theorem 1
with p = 1, to get that the expected absolute value of the second sum in
expression (2.1) can be regarded as O(ln3/2 d).
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Let {ηn}Nn=1 be mutually independent random variables with Rademacher
distribution, and x1, . . . , xN be real numbers. Then because of the mutual
independence-, the zero mean-, and the finite variance of the variables, one has

V

�
N�

n=1

ηnxn

�
= E

⎛
⎝
�����

N�
n=1

ηnxn

�����
2
⎞
⎠(3.6)

where V (·) donates the variance of a random variable. Based on our heuristic
assumption, equality (3.6), and Lemma 2, we can apply Theorem 1 with p = 2,
to get that the variance of the second sum in expression (2.1) can be taken as
O(ln3 d). �
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