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Abstract. Basing on the four types of Cauchy di�erences, some general
constructions of k-variable premeans and means generated by a single vari-
able real function f de�ned in a real interval I is discussed, special cases
are examined and open questions are proposed. In particular, if I is closed
under the addition, and f is such that F (x) := f (kx)−kf (x) is invertible,
then the �rst of four considered functions Mf : Ik → R is of the form

Mf (x1, ..., xk) = F−1 (f (x1 + ...+ xk)− (f (x1) + ...+ f (xk))) .

Conditions under which Mf is a k-variable mean (referred to as quasi-
Cauchy di�erence mean of additive type) are examined.

1. Introduction

The four types of Cauchy functional equations characterizing the elementary
additive, exponential, logarithmic and power functions through their properties
involving the operations of addition and multiplication (see J. Aczél [1], M.
Kuczma [10]), in a natural way lead to the Cauchy di�erences, functions which
are di�erences both sides of the respective equation (see for instance [11]).

In the present paper, basing on these Cauchy di�erences, and the idea
coming from the construction of quasi-arithmetic mean, we propose four general

Key words and phrases: Cauchy di�erence, premean, mean, invariant mean, iteration.

2010 Mathematics Subject Classi�cation: 33B15, 26E30, 39B22.



148 J. Matkowski

schemes of constructions of new classes of means (for the theory of means see,
for instance, [6], [2]).

To form the �rst two of them take: a real interval I, which is closed under
addition, a function f : I → R, a positive integer k ≥ 2, and write the k-variable
functions

Ik 3 (x1, ..., xk) 7−→ f (x1 + ...+ xk)− (f (x1) + ...+ f (xk)) ,

Ik 3 (x1, ..., xk) 7−→ f (x1 + ...+ xk)− f (x1) · ... · f (xk) ,

which are called the Cauchy di�erence of additive type generated by f , and the
Cauchy di�erence of exponential type generated by f , respectively.

Similarly, if the interval I is closed under multiplication, two remaining
k-variable functions:

Ik 3 (x1, ..., xk) 7−→ f (x1 · ... · xk)− (f (x1) + ...+ f (xk)) ,

Ik 3 (x1, ..., xk) 7−→ f (x1 · ... · xk)− f (x1) · ... · f (xk) ,

are called the Cauchy di�erence of logarithmic type generated by f, and the
Cauchy di�erence of multiplicative type generated by f , respectively.

Basing on these Cauchy di�erences, we present four general schemes of
creating new kind of premeans and means.

The �rst scheme, Theorem 1 in Section 3, gives general conditions under
which the k-variable function Mf : Ik → R of the form

Mf (x1, ..., xk) = F−1 (f (x1 + ...+ xk)− (f (x1) + ...+ f (xk))) ,

where F (x) := f (kx) − kf (x) (the restriction of the Cauchy di�erence of
the additive type to the main diagonal of Ik), is a premean or a mean; and
Mf :

⋃∞
k=2 I

k → I is referred to as the quasi-Cauchy di�erence (premean or)
mean of additive type generated by f . It is clear that the additive functions
f (x) = px are useless here. In this section we examine the quasi-Cauchy dif-
ference means of additive type generated, respectively, by the one-parameter
families of continuous multiplicative functions f (x) = xp (Proposition 1), ex-
ponential functions f (x) = px (Proposition 2), and logarithmic functions logp
(Proposition 3). In particular, Proposition 1 gives the explicit forms of con-
sidered family of means for all parameters p ∈ R\ {0}, its continuous exten-
sion to the family parameters p ∈ [−∞,∞], as well as some of their proper-
ties. Proposition 2 gives the implicit formula for the general case, but only
in the case k = 2, does it o�er a complete explicit description of the con-
sidered means. In view of Proposition 3, the family of all quasi-Cauchy dif-
ference means of additive type generated by the continuous logarithmic func-
tions reduces to a singleton family (independent of p) consisting of the mean
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B :
⋃∞
k=2 (0,∞)

k → (0,∞), where

B (x1, ..., xk) =

(
kx1 · ... · xk
x1 + ...+ xk

) 1
k−1

, k ∈ N, k ≥ 2; x1, ..., xk > 0.

In the remaining sections the proofs are omitted. In Section 4, Theorem 2,
a general scheme allowing to determine the quasi-Cauchy di�erence (premeans)
means of exponential type, is used, respectively, for additive functions (Propo-
sition 4); multiplicative functions (Proposition 5), and logarithmic functions
(Proposition 6).

In Section 5, Theorem 3, a general scheme of building the quasi-Cauchy
di�erence premeans and means of logarithmic type, is used, respectively, for
additive functions (Proposition 7), exponential functions (Proposition 8), and
multiplicative functions (Proposition 9).

Similarly, in Section 6, we apply general construction of quasi-Cauchy dif-
ference means of multiplicative type (Theorem 4), respectively, to additive
functions (Proposition 10), exponential functions (Proposition 11) and loga-
rithmic functions (Proposition 12). In some cases the mean is given by an
implicit equality. Occasionally, in the case k = 2, some invariant means are
considered.

In each of the sections an open problem concerning equality of the con-
sidered means is proposed. In the case of quasi-Cauchy di�erence mean of
additive type this problem reduces to a generalized Cauchy di�erence equation
considered by Bruce Ebanks [3], [4] where, basing on the results due to Antal
Járai [8], under some regularity conditions, the solutions are established.

2. Preliminaries

Let I ⊂ R be an interval. A function M :
∞⋃
k=1

Ik → I is called a premean

in I, if it is re�exive, i.e.

M (x, ..., x) = x, x ∈ I,

which means that for every k ∈ N and all x, x1, ..., xk ∈ I,

x1 = ... = xk = x =⇒M (x1, ..., xk) = x;

and it is called a mean in I, if for every k ∈ N,

min (x1, ..., xk) ≤M (x1, ..., xk) ≤ max (x1, ..., xk) , x1, ..., xk ∈ I.

If M is a premean in I, then M (x) = x for every x ∈ I. In the sequel we
assume that k ≥ 2.
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A function M : Ik → R is called re�exive if M (x, ..., x) = x for all x ∈ I;
and it is called a k-variable premean in I, if it is re�exive and M : Ik → I.

If M :
⋃∞
k=2 I

k → I is a premean (or mean) in I, then its restriction to
Ik, for simplicity denoted by M : Ik → I, is called a k-variable premean (or a
k-variable mean) in I.

A k-variable mean or premean in M : Ik → I is called:

strict if, for all x1, .., xk ∈ I, and i ∈ {1, ..., k} ,

M (x1, ., xi, .., xk) = xi =⇒ x1 = x2 = ... = xk;

symmetric, if M
(
xσ(1), ..., xσ(k)

)
=M (x1, ..., xk) for every (x1, ..., xk) ∈ Ik

and every permutation σ of {1, ..., k};
homogeneous, if I = (0,∞) and,

M (tx1, ..., txk) = tM (x1, ..., xk) , t, x1, ..., xk > 0 .

Of course, every mean is a premean, but the converse is not true. However
we have the following

Remark 1. If a function M : Ik → R is re�exive and (strictly) increasing
in each variable then it is a (strict) k-variable mean in I, and it is called an
increasing mean.

In particular, every (strictly) increasing premean in I is a (strict) mean.

Note that if for every k ∈ N, k ≥ 2, the functionMk : Ik → I is a k-variable

mean (premean) in I, then M :
∞⋃
k=1

Ik → I de�ned by M |Ik :=Mk is a mean

(premean) in I.

3. Quasi-Cauchy di�erence means of additive type

Theorem 1. Let k ∈ N, k ≥ 2, and an interval I ⊂ (0,∞) (or I = R),
closed under addition, be �xed. Assume that a function f : I → R is such that
function F : I → R de�ned by

(1) F (x) := f (kx)− kf (x) ,

is one-to-one. Then

(i) if the range of the Cauchy di�erence of additive type

(2) Ik 3 (x1, ..., xk) 7−→ f

 k∑
j=1

xj

− k∑
j=1

f (xj)
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is contained in the range of F , then the function Mf : Ik → R given by

(3) Mf (x1, ..., xk) := F−1

f
 k∑
j=1

xj

− k∑
j=1

f (xj)

 ,

is a well de�ned k-variable symmetric premean in I;

(ii) if f is continuous, and either F is strictly increasing and for every r ∈ I,
the function

(4) I 3 t 7−→ f (t+ r)− f (t) is (strictly) increasing,

or F is strictly decreasing for every r ∈ I and the function in (4) is (strictly)
decreasing, then the function Mf given by (3) is a k-variable symmetric (strict)
and (strictly) increasing k-variable mean in I.

Proof. (i) The assumptions guarantee that Mf is well de�ned and maps Ik

into I. From (1) we have, for every x ∈ I,

Mf (x, ..., x) = F−1 ((f (kx)− kf (x))) = x,

so Mf is re�exive, which proves that it is a premean in I. The symmetry of
Mf is obvious.

(ii) The continuity of f implies the continuity of F . If f satis�es (4) then,
clearly, for every real constant b, the function

I 3 t 7−→ f (t+ r)− f (t)− b is (strictly) increasing.

Taking t := x1, r =
∑k
j=2 xj , b =

∑k
j=2 f (xj), we have

f

 k∑
j=1

xj

− k∑
j=1

f (xj) = f (t+ r)− f (t)− b,

which shows that function (2) is (strictly) increasing in the �rst variable. The
symmetry of (2) implies that it is (strictly) increasing in each variable. Hence,
by (1), if F is increasing, then for all x1, ..., xk ∈ I, setting x := min (x1, ..., xk)
and y := max (x1, ..., xk) , we have

F (x) = f (kx)− kf (x) ≤ f

 k∑
j=1

xj

− k∑
j=1

f (xj) ≤ f (ky)− kf (y) = F (y) .

Thus, by the Darboux property of F, the range of function (2) is contained in
the range of F. Now (i) implies that Ef is a k-variable premean in I. Since the



152 J. Matkowski

composition of (strictly) increasing functions is (strictly) increasing, the result
follows from Remark 1.

If F is strictly decreasing and the function (2) is (strictly) decreasing, we
argue similarly, making use of the fact that composition of (strictly) decreasing
functions is (strictly) increasing. �

Remark 2. Every (strictly) convex function satis�es condition (4), that is
equivalent to the (strict) Wright-convexity of f.

Remark 3. If the function f is (strictly) convex (respectively, concave), then
for every r ∈ I, the function (4) is (strictly) increasing (respectively, decreas-
ing).

De�nition 1. Under the suitable conditions of Theorem 1, the function Mf

is referred to as the quasi-Cauchy di�erence mean (premean) of additive type
generated by f .

Note that the quasi-Cauchy quasi-di�erence mean Mf of additive type is

built with the aid of the sums f
(∑k

j=1 xj

)
and

∑k
j=1 f (xj) .

Remark 4. Since for a�ne functions, every quasi-Cauchy di�erence of additive
type is constant, no a�ne function generates a premean of the considered type.

Let k ∈ N, k ≥ 2, be �xed, let I ⊂ R be an an interval that is closed under
addition, and let f, g : I → R. In connection with Theorem 1 it is natural to ask
for conditions which guarantee that Mg =Mf , i.e. such for all x1, ..., xk ∈ I,

G−1

g
 k∑
j=1

xj

− k∑
j=1

g (xj)

 = F−1

f
 k∑
j=1

xj

− k∑
j=1

f (xj)

 ,

where

F (x) = f (kx)− kf (x) , G (x) = g (kx)− kg (x) , x ∈ I.

In the case k = 2, setting ϕ := G ◦ F−1, this leads to the following

Problem 1. Determine all functions f, g and ϕ satisfying the functional equa-
tion

(Eq) ϕ (f (x+ y)− f (x)− f (y)) = g (x+ y)− g (x)− g (y) , x, y ∈ I.

Assuming that f is continuously di�erentiable and locally not a�ne Ebanks
[4] ([3]) found the general solution of this (additive type) generalized Cauchy
di�erence equation (see also [5], where applying the results of Járai [8], a more
general Pexider equation is considered).

Applying the main result of [4] we obtain the following
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Remark 5. Let I ⊂ (0,∞) be an interval that closed under addition. Assume
that f : I → R is continuously di�erentiable and not a�ne on any subinterval
of I, and g is continuous. Put

Jf := {f (x+ y)− f (x)− f (y) : x, y ∈ I} .

If the functions f, g and ϕ : Jf → R satisfy the equation (Eq), then there are
a, b, c ∈ R, such that

g (x) = af (x) + bx+ c, x ∈ I; and ϕ (t) = at− c, t ∈ Jf .

In [3], where some stronger regularity on f is assumed, the two kinds of
proofs are given. Note that under some conditions, one can apply yet another
argument, based on the Cauchy Mean-Value Theorem. Indeed, assume that
f, g : I → R are twice di�erentiable, f ′′ (x) g′′ (x) 6= 0, for all x ∈ I, the
function g′′

f ′′ is locally monotonic in I\C, where C is a nowhere dense subset.
Let f, g and ϕ satisfy (Eq). The assumptions imply that Jf is an interval and
ϕ is twice di�erentiable in Jf . Di�erentiating both sides of (Eq), �rst in x and
then in y, we get

ϕ′ (f (x+ y)− f (x)− f (y)) [f ′ (x+ y)− f ′ (x)] = g′ (x+ y)− g′ (x) , x, y ∈ I,

and

ϕ′ (f (x+ y)− f (x)− f (y)) [f ′ (x+ y)− f ′ (y)] = g′ (x+ y)− g′ (y) , x, y ∈ I.

The condition g′′ (x) 6= 0 (x ∈ I) implies that g′ is strictly monotonic; in
particular, g′ is one to one. These equalities imply that f ′ is one to one and
ϕ′ (t) 6= 0 for all t ∈ Jf . Dividing the respective sides of these two equalities
we get

f ′ (x+ y)− f ′ (x)
f ′ (x+ y)− f ′ (y)

=
g′ (x+ y)− g′ (x)
g′ (x+ y)− g′ (y)

, x, y ∈ I,

whence
g′ (x+ y)− g′ (y)
f ′ (x+ y)− f ′ (y)

=
g′ (x+ y)− g′ (x)
f ′ (x+ y)− f ′ (x)

, x, y ∈ I.

We claim that the function g′′

f ′′ is constant. Indeed, in the opposite case we

could �nd an interval I0 ⊂ I\C such that the function g′′

f ′′ would be strictly
monotonic in I0 and, by the Cauchy Mean-Value Theorem,

g′′

f ′′
(Cg′,f ′ (x+ y, y)) =

g′′

f ′′
(Cg′,f ′ (x+ y, x)) , x, y ∈ I0, x 6= y,

where Cg′,f ′ : I2 → I denotes the the Cauchy mean generated by g′ and f ′,

Cg′,f ′ (x, y) =

(
g′′

f ′′

)−1(
g′ (x)− g′ (y)
f ′ (x)− f ′ (y)

)
, x, y ∈ I0; x 6= y.
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It follows that

Cg′,f ′ (x+ y, y) = Cg′,f ′ (x+ y, x) , x, y ∈ I0, x 6= y,

which is a contradiction, as the Cauchy mean Cg′,f ′ is symmetric and strictly
increasing with respect to each variable. Thus there is a ∈ R, a 6= 0, such that

g′′

f ′′
(x) = a, x ∈ I.

Hence g′′ (x) = af ′′ (x) for all x ∈ I and, consequently, there are real constant
b and c such that

g (x) = af (x) + bx+ c, x ∈ I.
It follows that, for all x, y ∈ I,

g (x+ y)− g (x)− g (y) = a [f (x+ y)− f (x)− f (y)]− c,

whence, setting ϕ (t) := at+ b for t ∈ Jf , we get the result.

Remark 6. In [3] and [4] the equation

ϕ (H (x, y)) = g (x+ y)− g (x)− g (y) , x, y ∈ I,

is considered, and in [5], under an additional assumption that 0 ∈ I, its Pexider
version.

3.1. Quasi-Cauchy di�erence means of additive type generated by
multiplicative functions

Using Theorem 1 (ii) for multiplicative continuous functions f we obtain
the following

Proposition 1. For every p ∈ R\ {0, 1}, the function Mp :
∞⋃
k=2

(0,∞)
k →

→ (0,∞) de�ned by

Mp (x1, ..., xk) =

(
(x1 + ...+ xk)

p − (xp1 + ...+ xpk)

kp − k

)1/p

is a quasi-Cauchy di�erence mean of additive type generated by the multiplica-
tive function f (x) = xp.

Moreover:

(i) the functionsM0, M1, M−∞, M∞ de�ned by

M0 (x1, ..., xk) =

(
kx1 · ... · xk
x1 + ...+ xk

) 1
k−1

,
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M1 (x1, ..., xk) =
1

k log k
log

(x1 + ...+ xk)
x1+...+xk

xx1
1 · ... · x

xk

k

,

M−∞ (x1, ..., xk) = min (x1, ..., xk) , M∞ (x1, ..., xk) =
x1 + ...+ xk

k

are means in (0,∞) and for every (x1, ..., xk) ∈ (0,∞)
k
, the function

[−∞,+∞] 3 p 7−→Mp (x1, ..., xk) is continuous and strictly increasing;

(ii) M0 = Mlog, that is M0 is quasi-Cauchy di�erence mean of the addi-
tive type generated by log, and it is the beta-type mean ([7]); M1 = Mid·log,
that is M1 is a quasi-Cauchy di�erence mean of additive type generated by
(id · log) (x) = x log x;

(iii) the means M∞ and M−∞ are not quasi-Cauchy di�erence means of
additive type;

(iv) for every p ∈ (−∞,∞] the meanMp is strict, symmetric and homoge-
neous.

Proof. Put I = (0,∞). The power function f (x) = xp for x ∈ I, with
p ∈ R\ {0, 1} , satis�es the conditions (ii) of Theorem 1 (see Remark 3). Indeed,
for every p ∈ R\ {0, 1} the function f is either strictly convex or strictly concave
and the respective function

F (x) = f (kx)− kf (x) = (kp − k)xp

is strictly monotonic. By Theorem 1(ii) we conclude that, for every p ∈
∈ R\ {0, 1}, the functionMp :=Mf is a mean, and for every (x1, ..., xk) ∈ Ip,

(kp − k) (Mp (x1, ..., xk))
p

= F (Mp (x1, ..., xk)) =

 k∑
j=1

xj

− k∑
j=1

f (xj)

= (x1 + ...+ xk)
p − (xp1 + ...+ xpk) ,

whence

Mp (x1, ..., xk) =

(
(x1 + ...+ xk)

p − (xp1 + ...+ xpk)

kp − k

)1/p

.

Since, making use of the de l'Hospital rule, for every (x1, ..., xk) ∈ Ik,

lim
p→0

logMp (x1, ..., xk) = lim
p→0

log
(x1+...+xk)p−(xp

1+...+xp
k)

kp−k
p

=
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= lim
p→0

( [(x1+...+xk)p log(x1+...+xk)−(xp
1 log x1+...+xp

k log xk)](kp−k)

(kp−k)2

(x1+...+xk)p−(xp
1+...+xp

k)
kp−k

−

−
(x1+...+xk)p−(xp

1+...+xp
k)

kp−k
(x1+...+xk)p−(xp

1+...+xp
k)

kp−k

)
=

=

log(x1+...+xk)−(log x1+···+log xk)(1−k)−(1−k) log k

(1−k)2

1−k
1−k

= log

(
kx1 · ... · xk
x1 + ...+ xk

) 1
k−1

,

we conclude that

M0 (x1, ..., xk) := lim
p→0
Mp (x1, ..., xk) =

(
kx1 · ... · xk
x1 + ...+ xk

) 1
k−1

.

On the other hand, from (3), taking f = log, we have, for all positive
x1, ..., xk,

log (kMlog)− k logMlog = log

k∑
j=1

xj −
k∑
j=1

log xj ,

whence, after easy calculations, for all positive x1, ..., xk,

Mlog (x1, ..., xk) =

(
kx1 · ... · xk
x1 + ...+ xk

) 1
k−1

=M0 (x1, ..., xk) .

Similar calculations show that for every (x1, ..., xk) ∈ Ik,

M1 (x1, ..., xk) := lim
p→1
Mp (x1, ..., xk) =

1

k log k
log

(x1 + ...+ xk)
x1+...+xk

xx1
1 · ... · x

xk

k

.

on the other hand, making use of (3) with f (x) = x log x, brie�y, f = id · log,
we have

Mid·log 1 (x1, ..., xk) =
1

k log k
log

(x1 + ...+ xk)
x1+...+xk

xx1
1 · ... · x

xk

k

=M1id·log 1 (x1, ..., xk) .

We omit simple calculations showing that, for all positive x1, ..., xk,

M∞ (x1, ..., xk) := lim
p→∞

Mp (x1, ..., xk) =
x1 + ...+ xk

k
.

To get the formula forM−∞, assume, for the simplicity of notations, that
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k = 2, and put x1 = x, x2 = y and p = −q where q > 0. Thus

Mp (x, y) = M−q (x, y) =

(
(x+ y)

−q − x−q − y−q

2−q − 2

)−1/q

=

=

(
2− 1

2q

)1/q(
1
xq + 1

yq −
1

(x+y)q

)1/q
.

Without any loss of generality we may assume that x = min (x, y) . Hence we
get (

2− 1
2q

)1/q(
2
xq

)1/q ≤M−q (x, y) ≤
(
2− 1

2q

)1/q(
1
xq

)1/q ,

whence

lim
p→−∞

Mp (x, y) = lim
q→∞

M−q (x, y) = x = min (x, y) .

We omit similar calculations in the case when k ≥ 3. Thus, for every
(x1, ..., xk) ∈ Ik, the function [−∞,∞] 3 p 7−→ Mp (x1, ..., xk) is continuous.
Since the pointwise limits of means are means, the functionsM0,M1,M−∞,
M∞ are means. Calculating the partial derivatives ofMp one can easily verify
that for every (x1, ..., xk) ∈ Ik, the function [−∞,∞] 3 p 7−→ Mp (x1, ..., xk)
is strictly increasing in each of the open intervals (−∞, 0), (0, 1), and (1,∞).
The continuity of this function implies that it is strictly increasing in [−∞,∞].
This completes the proofs of (i) and (ii).

Of course, the meanM−∞, being not strict, is not of the considered type.
Assume, for the contrary, thatM∞, the arithmetic mean is of the form (3) in
(0,∞) in the case k = 2, i.e. thatM∞ (x, y) = x+y

2 and thatM∞ =Mf for a
function f : (0,∞)→ R. From (3) and (1) we get

f

(
2
x+ y

2

)
− 2f

(
x+ y

2

)
= f (x+ y)− f (x)− f (y) , x, y > 0,

whence

f

(
x+ y

2

)
=
f (x) + f (y)

2
, x, y > 0,

that implies that f (x) = ax + b for all x > 0. Since for this function the
Cauchy di�erence is the constant zero, formula (3) does not de�ne a mean.
This completes the proof of (iii).

Result (iv) is obvious. �
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Remark 7. In the case k = 2, Proposition 1 gives

Mp (x, y) =



(
(x+y)p−(xp+yp)

2p−2

)1/p

if p ∈ R\ {0, 1}
2xy
x+y if p = 0

1
2 log 2 log (x+y)x+y

xxyy if p = 1.

In particular, M0 is the harmonic mean H (x, y) = 2xy
x+y mean, M2 is the

geometric mean G (x, y)=√xy, but this is not the case if k > 2. Moreover we
have, for all x, y > 0,

M−1 (x, y) =
3xy (x+ y)

2 (x2 + xy + y2)
, M3 (x, y) = A1/3 (x, y)G2/3 (x, y) ,

where A (x, y) = x+y
2 .

In the case p = 2 Proposition 1 gives

M2 (x1, ..., xk) =

√√√√2
∏

i,j=1,...,k, i 6=j
xixj

k (k − 1)
.

Conjecture 1. Let k ∈ N, k ≥ 2 be �xed. Assume that f : (0,∞)→ R satis�es
the conditions of Theorem 1, guarantying that Mf given by (3) is a k-variable
mean in (0,∞). If Mf is homogeneous then Mf =Mp for some p ∈ R.

3.2. Quasi-Cauchy di�erence means of additive type generated by
exponential functions

Using Theorem 1 with f (x) = px where p > 0, p 6= 1, we obtain

Proposition 2. For every p > 1 the function Mp :
∞⋃
k=2

(0,∞)
k → (0,∞) , with

the restriction to (0,∞)
k
de�ned as the continuous solutions of the implicit

equality

pkpMp − kppMp = px1+···+xk − (px1 + · · ·+ pxk) , x1, ..., xk > 0,

is a quasi-Cauchy di�erence mean of additive type generated by the exponential
function f (x) = px.

Moreover, if k = 2, then for all x, y > 0,

Mp (x, y) =


logp

(
1 +

√
(px − 1) (py − 1)

)
if p > 1

logp

(
1−

√
(1− px) (1− py)

)
if 0 < p < 1,
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M1 (x, y) := lim
p→1

Mp (x, y) =
√
xy, M∞ (x, y) := lim

p→∞
Mp (x, y) =

x+ y

2
.

M0 (x, y) := lim
p→0

Mp (x, y) = min (x, y) ,

and the function

[0,∞] 3 p 7−→Mp (x, y) is continuous.

Proof. Take arbitrary p > 0, p 6= 1, and f (x) = px for x ∈ (0,∞). Since
p = eq for some q ∈ R, q 6= 0, applying Theorem 1, we have F (x) = exp (kqx)−
−k exp (qx). Since F ′ (x) = kq exp (qx) [exp ((k − 1) qx)− 1] is positive for all
x ∈ (0,∞) and q ∈ R\ {0} , so F is strictly increasing in (0,∞) for each
q ∈ R\ {0}. Similarly, for each j = 1, ..., k, and every q ∈ R\ {0} , the function

(0,∞) 3 xj 7−→ exp p (x1 + ...+ xk)− (exp px1 + ...+ exp pxk)

is increasing in (0,∞). Therefore, in view of Theorem 1 (ii) and Remark 1,
for every p > 0, the function Mp := Mf is a well de�ned strict and symmetric
mean in (0,∞).

For k = 2, setting x1 = x, x2 = y, x, y > 0 in the implicit equality, we get[
pMp(x,y)

]2
− 2pMp(x,y) = px+y − (px + py) .

Hence, after easy calculations,

Mp (x, y) = logp

(
1 +

√
(px − 1) (py − 1)

)
if p > 1 ,

and
Mp (x, y) = logp

(
1−

√
(1− px) (1− py)

)
if 0 < p < 1.

Assume that p > 1. Since px = exp (x log p), setting q = log p we have

px = exp (qx) .

Note that

lim
q→0

exp(qx)− 1

q
= x, lim

q→0

exp(qy)− 1

q
= y, x, y > 0,

and

Mq (x, y) =
log
(
1 +

√
(exp (qx)− 1) (exp (qy)− 1)

)
q

.

Hence, applying the de l'Hospital rule, we get for all x, y > 0,

lim
p→1+

Mp (x, y) = lim
q→0+

Mq (x, y) =
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= lim
q→0+

1

q

(
log
(
1 +

√
(exp(qx)− 1) (exp(qy)− 1)

))
=

= lim
q→0+

x (exp(qx)) (exp(qy)− 1) + y (exp(qy)) (exp(qx)− 1)

2
√

(exp(qx)− 1) (exp(qy)− 1)
(
1 +

√
(exp(qx)− 1) (exp(qy)− 1)

) =

= lim
q→0+

x (exp(qx)) · q · exp(qy)−1
q + y (exp(qx)) · q · exp(qx)−1

q

2 · q ·
√

exp(qx)−1
q · exp(qy)−1

q

(
1 +

√
(exp(qx)− 1) (exp(qy)− 1)

) =

=
x · y + y · x
2 · √x · y

=
√
x y.

Similarly, making use of the formula for Mp if 0 < p < 1, we can show, that

lim
p→1−

Mp (x, y) =
√
xy, x, y > 0,

so M1 is well de�ned.

We omit similar calculations for the remaining results. �

Remark 8. A counterpart of Proposition 2 holds true for the interval (−∞, 0) .

Problem 2. Under the assumptions of Proposition 2, determine M1 and M∞
for arbitrary k ≥ 3.

3.3. Quasi-Cauchy di�erence mean of additive type generated by
logarithmic functions

Theorem 1 with f = logp, where p > 0, p 6= 1, gives

Proposition 3. For every p > 0, p 6= 1, the quasi-Cauchy di�erence function

of additive type Mf :
∞⋃
k=2

(0,∞)
k → (0,∞) generated by logarithmic function

f = logp, is a mean, and Mf = B, where

B (x1, ..., xk) =

(
kx1 · ... · xk
x1 + ...+ xk

) 1
k−1

, k ∈ N, k ≥ 2; x1, ..., xk > 0;

so it does not depend on p.

Proof. It is easy to verify that f = logp satis�es the conditions of Theorem 1
in the interval (0,∞). Since F (t) = logb (kt)− k logb, formula (3) implies that

logp
(
kMlogp

)
−k logp

(
Mlogp

)
= logb (x1 + ...+ xk)−[logb (x1) + ...+ logb (xk)] ,

whence, after simple calculations we get the result. �
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Remark 9. The mean B has recently appeared in [7] where it is shown that
B is the only mean that is of the beta-type, which means that it is of the form
f(x+y)
f(x)f(y) , just like the Euler Beta is of the form Γ(x+y)

Γ(x)Γ(y) .

4. Quasi-Cauchy di�erence means of exponential type

Similarly to Theorem 1 we obtain

Theorem 2. Let k ∈ N, k ≥ 2, and an interval I ⊂ (0,∞) (or I = R), closed
under addition, be �xed. Assume that f : I → (0,∞) is such that function
F : I → R de�ned by

(5) F (x) := f (kx)− [f (x)]
k
,

is one-to-one. Then

(i) if the range of the Cauchy di�erence of exponential type

(6) Ik 3 (x1, ..., xk) 7−→ f

 k∑
j=1

xj

− k∏
j=1

f (xj)

is contained in the range of F , then the function Mf : Ik → (0,∞) de�ned by

(7) Ef (x1, ..., xk) := F−1

f
 k∑
j=1

xj

− k∏
j=1

f (xj)

 ,

is a well de�ned k-variable symmetric premean in I;

(ii) if f is continuous and either F is strictly increasing and

(8) I 3 t 7−→ f

t+ k∑
j=2

xj

−
 k∏
j=2

f (xj)

 f (t) is (strictly) increasing,

or F is strictly decreasing and the function in (8) is (strictly) decreasing, then
the function Ef given by (7) is a k-variable symmetric (strict) mean in I.

De�nition 2. Under the suitable conditions of Theorem 2, the function Ef can
be referred to as the quasi-Cauchy di�erence mean (premean) of the exponential
type generated by f .

Remark 10. Since for every exponential function, the Cauchy di�erence of
exponential type is constant, no exponential function generates a premean of
that type.
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Let k ∈ N, k ≥ 2, an interval I ⊂ R, closed under addition, and let
f, g : I → R. In connection with Theorem 2, one can ask for conditions
guaranteeing the equality Mg =Mf , i.e. such that, for all x1, ..., xk ∈ I,

G−1

g
 k∑
j=1

xj

− k∏
j=1

g (xj)

 = F−1

f
 k∑
j=1

xj

− k∏
j=1

f (xj)

 ,

where

F (x) = f (kx)− [f (x)]
k , G (x) = g (kx)− [g (x)]

k , x ∈ I.

In the case k = 2, setting ϕ := G ◦ F−1, this leads to the following open

Problem 3. Determine all functions f, g and ϕ satisfying the functional equa-
tion

ϕ (f (x+ y)− f (x) f (y)) = g (x+ y)− g (x) g (y) , x, y ∈ I.

This equation is a special case of the generalized Cauchy di�erence equation
of the exponential type

ϕ (H (x, y)) = g (x+ y)− g (x) g (y) ,

where g,H and ϕ are the unknown functions.

4.1. Quasi-Cauchy di�erence means of exponential type generated
by additive functions

Using Theorem 2 with the linear functions f (x) = px we obtain

Proposition 4. Let k ∈ N, k ≥ 2 be �xed. For p > 0 put I =
(

1
p ,∞

)
or

I =
(
0, 1

p

)
. For every p > 0 there is a unique continuous function Ep : Ik → R

satisfying the implicit equality

pkEp − (pEp)k = p (x1 + ...+ xk)− pkx1 · ... · xk

and it is the quasi-Cauchy di�erence mean of exponential type generated by the
function f (x) = px.

Moreover, in the case k = 2,

if I =
(

1
p ,∞

)
then

Ep
(
x, y
)
=

1

p
+

√(
x− 1

p

)(
y − 1

p

)
, x, y ∈

(
1

p
,∞
)
,
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and

lim
p→∞

Ep (x, y) =
√
xy, x, y ∈ (0,∞) ;

if I =
(

1
p ,∞

)
then

Ep (x, y) =
1

p
−

√(
1

p
− x
)(

1

p
− x
)
, x, y ∈

(
0,

1

p

)
,

and

lim
p→0

Ep (x, y) =
x+ y

2
, x, y ∈ (0,∞) .

4.2. Quasi-Cauchy di�erence means of exponential type generated
by multiplicative functions

Using Theorem 2 for power functions f (x) = xp we obtain

Proposition 5. Let k ∈ N, k ≥ 2 be �xed. For every p > 0 there is a unique

continuous function Ep :
(
k

p−1
(k−1)p ,∞

)k
→
(
k

p−1
(k−1)p ,∞

)
satisfying the equality

(kEp)
p −

(
Ekp
)p

= (x1 + ...+ xk)
p − (x1 · ... · xk)p ,

and Ep is the quasi-Cauchy di�erence mean of exponential type generated by
the multiplicative function f (x) = xp.

Moreover, if k = 2 then

Ep (x, y) =

(
2p−1 +

√
(xy)

p − (x+ y)
p
+ 4p−1

)1/p

, x, y ∈
(
2

p−1
p ,∞

)
;

in particular

E1 (x, y) = 1 +
√
(x− 1) (y − 1), x, y ∈ (1,∞) ;

and

E0 (x, y) := lim
p→0

Ep (x, y) =
2xy

x+ y
, x, y > 0,

E∞ (x, y) := lim
p→∞

Ep (x, y) =
√
xy, x, y > 2 = sup

{
2

p−1
p : p > 0

}
,

and for all x, y > 2, the function

[0,∞] 3 p 7−→ Ep (x, y) is continuous.
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4.3. Quasi-Cauchy di�erence means of exponential type generated
by logarithmic functions

For the logarithmic functions f = logp we have less satisfactory

Proposition 6. For every p > 1 and k ∈ N, k ≥ 2, there is an interval I =
= (c (p) ,∞) ⊂ (0,∞) and a unique continuous function Ep : I

k → I satisfying
the implicit equality

logp (kEp)−
[
logp (Ep)

]k
= logp (x1 + ...+ xk)−

(
logp (x1)

)
· ... ·

(
logp (xk)

)
;

it is a quasi-Cauchy di�erence mean of exponential type generated by function
f = logp .

Moreover, if k = 2 then,

logpEp (x, y) =
1

2

(
1 +

√
1 + 4

[(
logp x

) (
logp y

)
− logp (x+ y) + logp 2

])
,

x, y ∈ I

and

E∞ (x, y) := lim
p→∞

Ep (x, y) =
x+ y

2
, x, y ∈ I.

5. Quasi-Cauchy di�erence means of logarithmic type

Theorem 3. Let k ∈ N, k ≥ 2, and an interval I ⊂ (0,∞) closed under
multiplication, be �xed. Assume that f : I → R is such that F : I → R de�ned
by

(9) F (x) := f
(
xk
)
− kf (x) ,

is one-to-one. Then

(i) if the range Cauchy di�erence of the logarithmic type

(10) Ik 3 (x1, ..., xk) 7−→ f

 k∏
j=1

xj

− k∑
j=1

f (xj)

is contained in the range of F , then the function Lf : Ik → (0,∞) de�ned by

(11) Lf (x1, ..., xk) := F−1

f
 k∏
j=1

xj

− k∑
j=1

f (xj)

 ,
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is a well de�ned k-variable symmetric premean in I;

(ii) if f is continuous and either F is strictly increasing and

(12)
I 3 t 7−→ f

t
 k∏
j=2

xj

−
f (t) + k∑

j=2

f (xj)


is (strictly) increasing,

or F is strictly decreasing and the function in (12) is (strictly) decreasing, then
the function Lf given by (11) is a k-variable strict symmetric mean in I.

Let us note the following

Remark 11. The function f satis�es condition (12) if for all x, y, z ∈ I,

x < z =⇒ f (zy)− f (xy) < z − x.

De�nition 3. Under the suitable conditions of Theorem 2, the function Lf
can be referred to as a quasi-Cauchy di�erence mean (premean) of logarithmic
type generated by f .

Remark 12. Since for the logarithmic functions, the Cauchy di�erences of
logarithmic type are constant zero, no logarithmic function generates a premean
of that type.

Let k ∈ N, k ≥ 2, an interval I ⊂ (0,∞), closed under multiplication, and
let f, g : I → R. In connection with Theorem 3, one can ask for conditions
guaranteeing the equality Mg =Mf , i.e. such that, for all x1, ..., xk ∈ I,

G−1

g
 k∏
j=1

xj

− k∑
j=1

g (xj)

 = F−1

f
 k∏
j=1

xj

− k∑
j=1

f (xj)

 ,

where

F (x) = f
(
xk
)
− kf (x) , G (x) = g

(
xk
)
− kg (x) , x ∈ I.

In the case k = 2, setting ϕ := G ◦ F−1, this leads to the following

Problem 4. Determine all functions f, g and ϕ satisfying the functional equa-
tion

ϕ (f (xy)− f (x)− f (y)) = g (xy)− g (x)− g (y) , x, y ∈ I.

This equation is a special case of the generalized Cauchy di�erence equation
of logarithmic type

ϕ (H (x, y)) = g (xy)− g (x)− g (y) ,

where g,H and ϕ are the unknown functions.
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5.1. Quasi-Cauchy di�erence means of logarithmic type generated
by additive functions

Taking f (x) = px in Theorem 3 we obtain

Proposition 7. Let k ∈ N, k ≥ 2 be �xed, and I = (0, 1) or I = (1,∞). Then
there is a unique continuous function L : Ik → I such that

Lk − kL =

k∏
j=1

xj −
k∑
j=1

xj, x1, ..., xk ∈ I;

and it is (independent on p) the quasi-Cauchy di�erence mean of logarithmic
type generated by the function f (x) = px.

Moreover, in the case k = 2 :

if I = (0, 1) , then

L (x, y) = 1−
√
(1− x) (1− y), x, y ∈ (0, 1) ;

if I = (1,∞) , then

L (x, y) = 1 +
√
(x− 1) (y − 1), x, y ∈ (1,∞) .

5.2. Quasi-Cauchy di�erence means of logarithmic type generated
by exponential functions

Applying Theorem 3 to the exponential functions we obtain the following

Proposition 8. For every p > 1, there is a strict symmetric mean Lp :

:
∞⋃
k=2

(1,∞)
k → (1,∞) satisfying the implicit equality

p(Lp)k − kpLp = px1·...·xk − (px1 + ...+ pxk) ,

that is the quasi-Cauchy di�erence mean of logarithmic type generated by the
function f (x) = px.

Remark 13. We do not know the e�ective formula of the mean Lp even if
k = 2, or if L1 := limp→1 Lp.

5.3. Quasi-Cauchy di�erence means of logarithmic type generated
by multiplicative functions

Applying Theorem 3 to the multiplicative function f (x) = xp we obtain
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Proposition 9. For every p > 0 there is a strict symmetric mean Lp :

:
∞⋃
k=2

(1,∞)
k → (1,∞) such that

(Lp)pk − k (Lp)p = (x1 · ... · xk)p − (xp1 + ...+ xpk) , x2, ..., xk > 1,

and it is the quasi-Cauchy di�erence mean of logarithmic type generated by the
power function f (x) = xp.

If k = 2 then, for all x, y > 1,

Lp (x, y) =
(
1 +

√
(xp − 1) (yp − 1)

)1/p

,

L0 (x, y) := lim
p→0
Lp (x, y) =

√
xy, L∞ (x, y) := lim

p→∞
Lp (x, y) = max (x, y) .

Remark 14. For every p < 0 the function F is strictly increasing and the
function in condition (12) is strictly decreasing (as the partial derivative of the
respective function is negative). It follows that the function Lf is a premean
in (1,∞) , and in the case k = 2,

Lf (x, y) =
(
1−

√
(1− xp) (1− yp)

)1/p

.

In particular, in case k = 2, Lf is not "complementary" to L−p with respect
to the geometric mean G = L0 (see [12]).

Remark 15. In case k = 2, setting for every p > 0,

L−p (x, y) :=
xy

Lp (x, y)
, x, y > 1,

we obtain a one-parameter family of means {Lp : p ∈ R} that is complete in
the sense of "complementariness", namely, for every p > 0 the mean L0 is
invariant with respect to mean-type mapping (Lp,L−p) : (1,∞)

2 → (1,∞)
2
,

that is
L0 ◦ (Lp,L−p) = L0.

This fact guarantees, that the sequence ( (Lp,L−p)n : n ∈ N) of iterates of the
mapping (Lp,L−p) converges (uniformly on compact subsets) to the mean-
type mapping (L0,L0) (see [8]). The mean L−p for p > 0 is not a logarithmic
type Cauchy quasi-di�erence mean of a multiplicative generator. This is a
disadvantageous property of this extension of the family {Lp : p ≥ 0}.
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6. Quasi-Cauchy di�erence means of multiplicative type

Since the continuous multiplicative functions are power functions, we use
letter P to denote the respective means.

Theorem 4. Let k ∈ N, k ≥ 2, and an interval I ⊂ (0,∞) closed under
multiplication, be �xed. Assume that a function f : I → R is such that function
F : I → R de�ned by

(13) F (x) := f
(
xk
)
− [f (x)]

k
,

is one-to-one. Then

(i) if the range of the Cauchy di�erence of exponential type

(14) Ik 3 (x1, ..., xk) 7−→ f

 k∏
j=1

xj

− k∏
j=1

f (xj)

is contained in the range of F , then the function Pf : Ik → (0,∞) de�ned by

(15) Pf (x1, ..., xk) := F−1

f
 k∏
j=1

xj

− k∏
j=1

f (xj)

 ,

is a well de�ned k-variable symmetric premean in I;

(ii) if f is continuous and either F is strictly increasing and

(16) I 3 t 7−→ f

t k∏
j=2

xj

− f (t) k∏
j=2

f (xj) is (strictly) increasing,

or F is strictly decreasing and the function in (16) is (strictly) decreasing, then
the function Pf given by (15) is a k-variable symmetric (strict) mean in I.

Let k ∈ N, k ≥ 2, an interval I ⊂ (0,∞), closed under multiplication, and let
f, g : I → (0,∞). Similarly as in the previous section, we can ask for conditions
guaranteeing the equality Mg =Mf , i.e. such that, for all x1, ..., xk ∈ I,

G−1

g
 k∏
j=1

xj

− k∏
j=1

g (xj)

 = F−1

f
 k∏
j=1

xj

− k∏
j=1

f (xj)

 ,

where

F (x) = f
(
xk
)
− [f (x)]

k , G (x) = g
(
xk
)
− [g (x)]

k , x ∈ I.

In the case k = 2, setting ϕ := G ◦ F−1, this leads to the following
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Problem 5. Determine all functions f, g and ϕ satisfying the functional equa-
tion

ϕ (f (xy)− f (x) f (y)) = g (xy)− g (x) g (y) , x, y ∈ I.

This equation is a special case of the generalized Cauchy di�erence equation
of multiplicative type

ϕ (H (x, y)) = g (xy)− g (x) g (y) ,

where g,H and ϕ are the unknown functions.

6.1. Quasi-Cauchy di�erence means of multiplicative type
generated by additive functions

Applying Theorem 4 to the continuous additive functions we obtain

Proposition 10. The geometric mean G :
∞⋃
k=2

(0,∞)
k → (0,∞) ,

G (x1, ..., xk) = k
√
x1 · ... · xk, x1, ..., xk ∈ (0,∞) ,

is a quasi-Cauchy di�erence mean of multiplicative type generated by linear
functions; more precisely: if p > 0, p 6= 1, and f(x) = px for x ∈ (0,∞), then

Pf = G.

Remark 16. If f(x) = x then F is zero constant function, so it is not invertible.
Thus, in the above proposition, the assumption p 6= 1 is essential.

6.2. Quasi-Cauchy di�erence means of multiplicative type
generated by exponential functions

Applying Theorem 4 to the continuous exponential functions we obtain

Proposition 11. Let p > 1 and let f(x) = px for x ∈ (1,∞). Then there is a

unique multiplicative type Cauchy quasi-di�erence mean Pf :
∞⋃
k=2

(
k

1
k−1 ,∞

)k
→

→ (1,∞) generated by f ; moreover Pf satis�es the following implicit equality

p(Pf (x1,...,xk))k−pkPf (x1,...,xk) = px1·...·xk−px1+...+xk , x1, ..., xk ∈
(
k

1
k−1 ,∞

)
.
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6.3. Quasi-Cauchy di�erence means of multiplicative type
generated by logarithmic functions

Now we apply Theorem 4 to continuous logarithmic functions.

Proposition 12. Let p > 1; let I = (p,∞) or I = (1, p) , and let f =
= logp. There is a unique multiplicative type Cauchy quasi-di�erence mean

Pf :
∞⋃
k=2

Ik → I generated by f in the interval I and Pp := Pf satis�es the

following implicit equality

k logp Pp (x1, ..., xk)−
[
logp Pp (x1, ..., xk)

]k
=

= logp (x1 · ... · xk)−
(
logp x1

)
· ... ·

(
logp (xk)

)
.

Moreover, in the case k = 2,

if I = (p,∞) , then

Pp (x, y) = p
1+

√
(logp x−1)(logp y−1),

and

P1 (x, y) := lim
p→1
Pp (x, y) = exp

√
(log x) (log x), x, y > 1;

if I = (1, p) ,

Pp (x, y) = p
1−

√
(1−logp x)(1−logp y)

and

P∞ (x, y) := lim
p→∞

Pp (x, y) =
x+ y

2
, x, y > 1.

Remark 17. This proposition and the relation logp = − log 1
p
allow to formu-

late the suitable result for p ∈ (0, 1).

7. Final remark

The question when the direct Cauchy di�erence of additive-, exponential-,
logarithmic- or multiplicative-type of a generator g is a premean, leads, respec-
tively, to the iterative functional equation:

g (2x)− 2g (x) = x; g (2x)− [g (x)]
2
= x;

g
(
x2
)
− 2g (x) = x; g

(
x2
)
− [g (x)]

2
= x,
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solving of which requires some special methods (see M. Kuczma [9]). Contrary
to this, result (i) in each of our four theorems shows that the relevant k-variable
function is a pre-mean. Taking into account Remark 1, the author would
welcome the examples of the respectively constructed premeans which are not
increasing in each of the variable.

Acknowledgement. The author is highly indebted to the Reviewer for his
very important remarks and suggestions.
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