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Abstract. In the paper [2] we dealt with some basic functional equations
on an infinite hypergroup join. The special property of that join is that
every non-identity element is of infinite order, i.e. no power of it is the
identity, but there is no nonzero additive function on this hypergroup. In
this paper we extend the ideas to construct an infinite join starting from
arbitrary finite hypergroups and we describe some basic function classes
on this hypergroup.

1. Introduction

A comprehensive monograph on hypergroups is [1] and a detailed study
on functional equations on hypergroups can be found in [4]. Notation and
terminology here will be used according to these works. By C we denote the
set of complex numbers, N is the set of all non-negative integers.

A particular hypergroup which played a basic role in the paper [2] is the
two-element hypergroup D(θ) (see [1, 4]). For the sake of completeness, we
recall here the definition.

The two-element hypergroup D(θ) on the set {o, a} with a �= o and θ in
(0, 1] is defined as follows: o is the identity element, involution is the identity
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mapping, and convolution is defined by the equations

δo ∗ δo = δo

δo ∗ δa = δa ∗ δo = δa

δa ∗ δa = θδo + (1− θ)δa.

We note that in the case θ = 1, D(θ) is the two-element group Z2.

It is easy to check that the normalized Haar measure on D(θ) is

ωD(θ) =
θ

θ + 1
δo +

1

θ + 1
δa.

We note that on discrete hypergroups we shall use the Haar measure which is
normalized in the way that the singleton {o} has measure 1. This will be called
the unit-normalized Haar measure.

We also recall the definition of hypergroup joins (see [3]). Let (C, ∗C) be a
compact hypergroup with the normalized Haar measure ωC and (D, ∗D) be a
discrete hypergroup. Assume that C ∩D = {e}, where e denotes the identity
of both hypergroups. We write De for the set D\{e}. The hypergroup join
C ∨D is the set C ∪D with the unique topology for which both C and D are
closed subspaces. Involution on C ∪D is defined in the way that its restriction
to C and to D, respectively, coincide with the involution on C and on D,
respectively.

Convolution on C ∨D is defined in the following way (see [1]):

(i) for x, y in C the convolution of δx and δy is δx ∗C δy;

(ii) for x, y in D satisfying x �= y̌ the convolution of δx and δy is δx ∗D δy;

(iii) for x in C and y in D with y �= e the convolution of δx and δy, and also
the convolution of δy and δx is δy;

(iv) for y in D with y �= e we have the unique representation

δy ∗D δy̌ =
∑
w∈D

cwδw =
∑

w∈De

cwδw + ceδe

with some complex numbers cw with w in D. Then the convolution of δy
and δy̌ and also the convolution of δy̌ and δy is

∑
w∈De

cwδw + ceωC = δy ∗D δy̌ + ce(ωC − δe).
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The construction of an infinite join is due to I. Jewett in [3] and it was
used by H. Zeuner in [8] who studied random walk on N with the convolution
structure of the infinite hypergroup join which we shall present below (see [2]∗).

Let K0 = {0} and Jn = {0, n} for n in N. Suppose that a sequence (θn) in
[0, 1] is given with θ0 = 0 and θn > 0 for n > 0. Put

Kn+1 = Kn ∨ Jn+1, n = 0, 1, 2, . . .

Here Jn is the two-point hypergroup D(θn), i.e. the hypergroup with convolu-
tion defined as

δn ∗ δn = θnδ0 + (1− θn)δn.

Let K =
⋃

n∈N
Kn = {δ0, δ1, δ2, . . . }. Of course, we identify n with δn and K

with the set N of natural numbers. On K the hypergroup structure is defined
in the following way: for m �= n we have

δm ∗ δn = δmax(m,n),

and for an arbitrary n ≥ 1

δn ∗ δn =
n−1∑
k=0

θk+1θk+2 · · · θn
(θk + 1)(θk+1 + 1) · · · (θn−1 + 1)

δk + (1− θn)δn,

where we write θ0 = 0. This is easy to check by the definition of the convolution
on hypergroup joins. Then Kn is a subhypergroup of K. In particular, K1 =
= K0 ∨D(θ1) = D(θ1). We note that the translation operator τn, defined for
each n in N by

τnf(k) = f(k ∗ n) = δn ∗ f(k)
has the property that τnf(k) = f(n) for k = 0, 1, . . . , n− 1, τnf(k) = f(k) for
k = n+ 1, n+ 2, . . . , and

τnf(n) =
n−1∑
k=0

θk+1θk+2 · · · θn
(θk + 1)(θk+1 + 1) · · · (θn−1 + 1)

f(k) + (1− θn)f(n).

In [2], we proved the following theorems.

Theorem 1.1. Every generalized exponential monomial on K is a constant
multiple of an exponential.

Theorem 1.2. Every exponential on K is a character.

Corollary 1.1. Every exponential polynomial on K is a trigonometric poly-
nomial.

∗Unfortunately, in the final published version of paper [2] two pages are missing – here
we present the content of those pages.
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In this paper we generalize the above construction by replacing the Jn
hypergroups with arbitrary finite hypergroups.

2. Infinite join of finite hypergroups

Let Jn be a sequence of finite hypergroups with J0 = {0} and Jn∩Jk = {0}
for each n, k in N with n �= k. Our purpose is to construct an infinite join from
the ”blocks” Jn. For the sake of simplicity we identify the sets Jn with subsets
of N in the following manner. Let k0 = 0 < k1 < · · · < kn < . . . be a strictly
increasing sequence of natural numbers and we asume that the hypergroup Jn
(n = 1, 2, . . . ) is defined on the set {0, kn−1 + 1, kn−1 + 2, . . . , kn}. In other
words, J0 = {0}, J1 = {0, 1, 2, . . . , k1}, J2 = {0, k1 + 1, k1 + 2, . . . , k2}, etc.

Let K0 = J0 = {0} and Kn+1 = Kn ∨ Jn+1 for n = 0, 1, . . . . Here we
consider Kn as the compact part and Jn+1 as the discrete part of the join. It is
clear that, for k ≤ n, the hypergroup Kk is a subhypergroup of Kn. It follows
that if we let K = N =

⋃∞
n=0 Kn, then there is a unique hypergroup structure

such that each Kn is a subhypergroup of K. We note that in the paper [2] we
considered the special case where kn = n.

We can illustrate the set K by the picture below:

In the rest of this paper we consider only commutative joins. Hence we
assume that all the finite hypergroups Jn above are commutative. We shall use
the following theorems about the description of exponentials and exponential
monomials on hypergroup joins (see [7]).

Theorem 2.1. On a compact commutative hypergroup every nonzero general-
ized exponential monomial is of degree zero, that is, a constant multiple of an
exponential. (See [7, Theorem 3]).

Theorem 2.2. Let C be a compact hypergroup and D a discrete hypergroup
and let C ∨ D denote the corresponding hypergroup join (see Section 1). The
continuous function m : C ∪D → C is an exponential on the hypergroup join
C ∨D if and only if one of the the following possibilities holds:
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i) m
∣∣
C
�= 1 is an exponential on C and m

∣∣
De

is identically zero;

ii) m
∣∣
C
is identically 1 and m

∣∣
D
is an exponential on D. (See [7, Theorem 6]).

Theorem 2.3. Let C be a compact hypergroup and D a discrete hypergroup, d
a natural number, and let C ∨D denote the corresponding hypergroup join (see
Section 1). The continuous function f : C∪D → C is a generalized exponential
monomial of degree at most d on the hypergroup join C ∨D if and only if one
of the the following possibilities holds:

i) f
∣∣
C

�= 1 is a generalized exponential monomial of degree at most d as-

sociated with an exponential mC �= 1 on C, and and f
∣∣
De

is identically
zero;

ii) f
∣∣
C

is constant, and f
∣∣
D

is a generalized exponential monomial of degree
at most d on D. (See [7, Theorem 7]).

3. Exponential monomials and polynomials on the infinite join

In this section K denotes the hypergroup defined as in Section 2. Let
M : K → C be an exponential. We note that every exponential is 1 at the
identity element. Then, clearly, the restriction M

∣∣
Kn

is an exponential on Kn.
The following theorem describes all exponentials on K.

Theorem 3.1. Let M : K → C be an exponential. Then we have the following
possibilities:

1. M ≡ 1;

2. There exists a unique natural number n such that M(x) = 1 for x in Kn,
M

∣∣
Jn+1

is an exponential, which is not identically 1, and M(x) = 0 for x

not in Kn+1.

Proof. Suppose that M �≡ 1, then let x be in K such that M(x) �= 1,
then x �= 0. Let n be the greatest positive integer such that x is not in Kn

but x is in Kn+1. Then, by Theorem 2.2, when applied to the hypergroup
join Kn+1 = Kn ∨ Jn+1, we have that M

∣∣
Kn

is identically 1, hence M
∣∣
Jn+1

is an exponential on Jn+1. On the other hand, M
∣∣
Kn+1

is an exponential on

Kn+1, and it is not identically 1, hence by Theorem 2.2, when applied to the
hypergroup join Kn+2 = Kn+1 ∨ Jn+2, we infer that M

∣∣
Jn+2,o

is identically

zero, where Jn+2,o = Jn+2\{o}. It follows that there is a y in Jn+2 such that
M(y) = 0. Let z be not in Kn+1, then, by the definition of the convolution
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on the join, we have δz = δy ∗ δz, hence, by the multiplicative property of the
exponential M we have

M(z) = M(δz) = M(δy ∗ δz) = M(δy)M(δz) = M(y)M(z) = 0,

which proves our theorem. �

We establish that every exponential M on K arises in the following way:
there exists a unique positive integer n and a unique exponential mM on Kn

such that

(3.1) M(x) =

⎧⎪⎨
⎪⎩

1 for x ≤ kn−1

mM (x) for kn−1 < x ≤ kn

0 for x > kn.

In other words, the mapping M ↔ mM is a one-to-one correspondence between
the set of all exponentials of K and the union of the sets of exponentials of the
hypergroups Jn for n = 0, 1, . . . : every exponential on K is the extension of a
unique exponential of some of the Jn’s.

Now it is easy to describe generalized exponential monomials and polyno-
mials on the infinite join K. For more details about exponential monomials
and polynomials on general commutative hypergroups see [5] and [6].

Let f : K → C be a nonzero generalized exponential monomial associated
with the exponential M on K. Then f

��
Kn

, the restriction of f to Kn, is a

generalized exponential monomial associated with the exponential M
��
Kn

, the
restriction of M to Kn. We may choose n as large as necessary so that f is
nonzero, e.g. n ≥ N . Then, by Theorem 2.1, f

��
Kn

= cnM
��
Kn

with some
complex number cn. Clearly, for n ≥ k ≥ N we have cn = ck. It follows that
f(x) = cM(x) for each x.

We can summarize our results in the following theorem.

Theorem 3.2. Let the finite hypergroups Jn (n = 0, 1, 2, . . . ) be commutative,
and let K denote the infinite join constructed above. For each exponential M
on K, the function f : K → C is a generalized exponential monomial associated
with M if and only if f = cM with some complex number c. Hence every gen-
eralized exponential polynomial on K is a linear combination of exponentials.
In particular, every generalized exponential monomial (polynomial) on K is an
exponential monomial (polynomial).

As the function cM – with c is an arbitrary complex number – is obviously
an exponential monomial associated with the exponential M on K, hence the
previous theorem completely characterizes (generalized) exponential polynomi-
als on K.
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[2] Fechner, Ż and L. Székelyhidi, Functional equations on an infinite
hypergroup join, Ann. Univ. Sci. Budapest., Sect. Comp., 49 (2019),
179–185.

[3] Jewett, R.I., Spaces with an abstract convolution of measures, Adv.
Math., 18(1), (1975), 1–101.
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