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Abstract. By the Fermat-principle, assuming a refractive index of
1/(1− |z|2) (z ∈ D), light traverses along hyperbolic lines. These lines can
be described by Blaschke-functions and are also the solutions to a varia-
tional problem. In this paper we describe a generalization of the above
problem, by taking a refractive index of (1− |Ba(z)|2)/|B′

a(z)|, where Ba

denotes a Blaschke-product. We show that the solutions of the generalized
problem are inverse images of Blaschke-products who induce an n-fold ge-
ometry on D. In the special case of n = 2, we provide the explicit form of
the solutions.

1. Introduction

In this work we introduce a generalization of the Poincaré model of Bolyai’s
geometry and consider its physical interpretations. The geometry of the model
is described by Blaschke-functions. Hyperbolic lines (arcs of the disk D which
intercept T perpendicularly) can be interpreted as the Blaschke-images of the
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real interval (−1, 1). They can also be generated as the solution to the varia-
tional problem

(1.1) min
Γ

J (Γ), J (Γ) := J (Φ) :=

t2∫

t1

|Φ�(t)|
1− |Φ(t)|2 dt,

where
Γ := {Φ(t) : t1 ≤ t ≤ t2}, Φ(tj) = zj (j = 1, 2)

is a parametrization of the simple smooth curve Γ. The hyperbolic line segment
connecting the points z1 and z2 is the solution Φ0 problem (1.1). As shown in
section two, this is a simple consequence of the identity

(1.2)
|B�

a(z)|
1− |Ba(z)|2 =

1

1− |z|2 (a, z ∈ D)

regarding Blaschke-functions.

According to the Fermat-principle, in a given substance, light traverses
along the path which it can cover in the least amount of time. In section two
we show that for a refractive index of 1/(1 − |z|2) (z ∈ D), the path of light
coincides with the solution to (1.1).

In this paper we propose a generalization of the variatonal problem (1.1)

and describe its solutions. Instead of
1

1− |z|2 (z ∈ D), let us take functions of

the form |B�(z)|
1− |B(z)|2 (z ∈ D)

where

(1.3) B(z) :=
n−1∏
j=0

Baj
(z) (a = (a0, . . . , an−1) ∈ Dn, z ∈ D)

denotes a Blaschke-product rather than an individual Blaschke-function

In this paper we will consider only the special case n = 2. We will provide
the inverse of (1.3) in an explicit form. Denoting the j-th (j = 0, 1) branch of
the inverse function of a Blaschke-product by B−1

j , we introduce a geometric

structure on the set set D� := B−1
0 (D) ∪ B−1

1 (D) (see (4.1)). Let G be the set
of simple smooth curves on D. The functions B−1

j map the curves of G to the
curves in D�.

In the second section we describe the most important properties of Blaschke-
functions and give a simple proof of the minimum property of hyperbolic line
segments based on (1.2). This will serve as an example for the general case.
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In the third section we provide the inverse images of Blaschke-products for
n = 2. We show that the functions B−1

j (j = 0, 1) can be interpreted as general-
izations of the square root function. We also describe the relationship between
(1.1) and the solutions of the generalized variational problems. Moreover, we
show that these solutions coincide with the transformed images of hyperbolic
line segments.

Finally in the fourth section we provide a proof of the explicit form of inverse
Blaschke-products.

2. Hyperbolic arc length, the path of light on a hyperbolic plane

In this section we show that for the refractive index

1

1− |z|2 (z ∈ D)

a light-beam traverses from point z1 to z2 on a hyperbolic line segment. This
well-known statement is a direct consequence of (1.2). As this result serves as
the basis of our generalizations, we describe it in detail here.

First we remark some important properties of Blaschke-functions and re-
lated theorems. It is well-known (see [5], [6]), that

Ba(z) :=�Ba(z) := �
z − a

1− az
, ηa(z) := �

1− za

1− za
. (a, a1, a2 ∈ B)

(a := (a, �) ∈ B := D× T, z ∈ D)

Blaschke-functions are bijections on the disk and on the torus. In addition they
form a group with respect to function composition:

B−1
a = Ba− , Ba1

◦Ba2
= Ba1◦a2

,

a− = (−�a, �), a1 ◦ a2 = (Ba−
2
(a1), �1ηa−

2
(a1)).

This group can be identified as the group of congruence transformations in the
Poincaré model. The lines in the model consist of circle arcs, and Euclidean
lines inside the disk, which are perpendicular to the torus. These can be given
by:

Ba : I := [−1, 1] → D (a ∈ B).

The points Ba(1), Ba(−1) ∈ T are called ideal points. We denote a hyperbolic
line segment connecting the points z1 and z2 by [z1, z2]. Hyperbolic line seg-
ments can be parametrized by Blaschke-functions (see [5], [6]): for any [z1, z2]
segment there exists an interval [t1, t2] ⊂ I and c ∈ B such that

[z1, z2] = {Bc(t) : t1 ≤ t ≤ t2}.
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We note that this parameterization of hyperbolic line segments is not unique,
furthermore if z1 and z2 fall on a radius of D, the segment [z1, z2] coincides
with the Euclidean segment connecting the points.

The mapping

ρ0(z1, z2) :=
|z1 − z2|
|1− z2z1| = |Bz2(z1)| (z1, z2 ∈ D)

is a metric on the set D. This metric has the following invariant property:

ρ0(Ba(z1), Ba(z2)) = ρ0(z1, z2) (z1, z2 ∈ D, a ∈ B).

ρ0 is called pseudo-hyperbolic metric. In addition to ρ0, it is useful to introduce
the hyperbolic metric (see [4], [5], [6]):

ρ1(z1, z2) := ath(ρ0(z1, z2)) =
1

2
log

1 + ρ0(z1, z2)

1− ρ0(z1, z2)
(z1, z2 ∈ D).

The metric ρ1 is additive on hyperbolic lines:

t0 ≤ t1 ≤ t2 ⇒ ρ1(t0, t1) + ρ1(t1, t2) = ρ1(t0, t2),

therefore the following holds for the points zj := Ba(tj) (j = 0, 1, 2) of the line
{Ba(t) : t ∈ I}:

ρ1(z0, z1) + ρ1(z1, z2) = ρ1(z0, z2).

We will make us of the following identities (see [4], [5]):

1− |Ba(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2 = |B′
a(z)|(1− |z|2) (a ∈ D, z ∈ D),

BBa(z1)(Ba(z2)) = ηa(z2)Bz1(z2), ηBa(z1)(Ba(z2)) = ηa(z1)ηa(z2)ηz1(z2).

(2.1)

Let Γ ⊂ D be a simple smooth curve and γ : [t1, t2] → Γ be a parametrization
of Γ. Then the number

J (γ) :=

t2∫

t1

|γ′(t)|
1− |γ(t)|2 dt

is referred to as the the hyperbolic arc length of the curve.

We say that the parametrizations γ and γ1 are equivalent if there exists an
s ∈ C1[τ1, τ2], s : [τ1, τ2] → [t1, t2] bijection for which γ1 = γ◦s. The hyperbolic
arc length is independent from (equivalent) parametrizations: J (γ1) = J (γ).
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We now show that hyperbolic arc length is invariant to congruent transfor-
mations. Indeed, if γ1 = Ba ◦ γ, then by (2.1) we obtain

J (γ1) =

t2∫

t1

|γ′
1(t)|

1− |γ1(t)|2 dt =

t2∫

t1

|B′
a(γ(t))||γ′(t)|

1− |Ba(γ(t))|2 dt =

=

t2∫

t1

|γ′(t)|
1− |γ(t)|2 dt = J (γ).

Using the above statement we can calculate the hyperbolic arc lengths of hy-
perbolic line segments. Any hyperbolic line segment connecting the points z1
and z2 can be transformed onto the interval [0, t] by a Blaschke-function, where
t = ρ0(z1, z2). The hyperbolic arc length of the transformed segment is given
as

(2.2)

t∫

0

dτ

1− τ2
= ath(t) = ath(ρ0(z1, z2)) = ρ1(z1, z2).

By (2.2) we showed that the arc length of a hyperbolic line segment equals the
ρ1 distance between its endpoints.

Similarly it can be shown that among the curves connecting two points,
the hyperbolic line segment has the minimal hyperbolic arc length. Indeed, let
φ : [t1, t2] → D be a parametrization of the smooth curve connecting the points
zj = φ(tj) (j = 1, 2). Denote by Bc a transformation for which Bc(z1) = 0,
Bc(z2) = t = ρ0(z1, z2) holds. Then, the transformed curve φ1 := Bc ◦ φ has
the following properties:

φ1(t1) = 0, φ1(t2) = t = ρ0(z1, z2),

J (φ) = J (φ1) =

t2∫

t1

|φ′
1(t)|

1− |φ1(t)|2 dt.

Let F (t) = ath(|φ1(t)|), t1 ≤ t ≤ t2. Then

F ′(t) =
�φ′

1(t), φ1(t)�/|φ1(t)|
1− |φ1(t)|2

and

J (φ) = J (φ1) ≥
∣∣∣

t2∫

t1

F ′(t) dt
∣∣∣ = |F (t2)− F (t1)| = ath(t) = ρ1(z1, z2).
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Hence we showed that the arc length of any curve connecting two points is not
less than the the arc length of the hyperbolic line segment connecting the same
points.

Since the geometric and optical minimum tasks are equivalent, the following
statement holds. Assuming a refractive index of 1/(1 − |z|2) (z ∈ D), light
traverses along hyperbolic lines.

3. Blaschke-products of two factors

In this section we discuss the inverses of two-factor Blaschke-products:

B = Ba0Ba1 (a0, a1 ∈ D)

and consider their physical interpretations. We denote the half-disks by

D0 := {z ∈ D : �z > 0} ∪ Ji, J := {−t : 0 ≤ t < 1}, D1 := −D0.

These half-disks provide a partitioning of D, for which D0 ∩ D1 = {0}. The
function W → √

W will be defined as

sqrt(W ) :=
√
W := ρ1/2eit/2 (W = ρeit ∈ D,−π ≤ t < π).

Then the mapping sqrt : D → D0 is a bijection which is differentiable on D
with the exception of points which fall inside J, where sqrt has a jump of π.

In section four we show that the inverse branches of the twofold mapping
W = B(w) can be given as

(3.1) wj = Bc((−1)jw), w :=
√
v, v = B−r2(κW )

where κ ∈ T, c ∈ B and r = ρ0(a0, a1)/2. The parameter c ∈ B is determined
by the condition

Bc(r) = a0, Bc(−r) = a1.

In other words Bc is a hyperbolic congruence transformation which maps the
interval [−r, r] onto the segment [a1, a0]. It follows that af := Bc(0) is the
midpoint of the hyperbolic line segment. By (3.1) we get that W → w0 is a
bijection between the sets D and D0

c := Bc(D0), moreover B(wj) = W (j = 0, 1)
holds.

In geometric terms, the first equation of (3.1) means that the point w0 is the
hyperbolic reflection of w1 with respect to af = Bc(0). It is therefore sufficient
to consider the inverse branch

W → w0 =: B−1
0 (W ) (W ∈ D).
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Sets Dj and B−1
j (j = 0, 1)

The mapping B−1
0 is differentiable in any points v /∈ J. On the other hand, by

(3.1), for the singular points of B−1
0 we get

(3.2) B−r2(κW ) ∈ J ⇔ W ∈ κBr2(J) = κ(−1,−r2].

With (3.2) we showed that the singular points of B−1
0 (and thus those of B−1

1 )
consist of the interval C = Ca = κ(−1,−r2], which can interpreted as the
rotation of the interval (−1,−r2]. Next we determine the the Blaschke-product
image of the endpoint of interval C, which can be given as W1 := −κr2. By
(3.1) and B−r2(κW1) = 0 we get B−1

0 (W1) = Bc(0) = af , therefore the point
Af := B(af ) is an endpoint of the interval C.

Left: Inverse Blaschke-product images of the hyperbolic line segments which
either avoid (top), or cross (bottom) the segment [Af , S].

Right: Hyperbolic line segments on the disk, and the segment C.
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We denote by G0 and G1 subsets of the simple smooth curves Γ ⊂ D which
have 0 and 1 intersection points with C respectively. We note that hyperbolic
line segments have this property, or equivalently [z1, z2] ∈ G := G0 ∪ G1. Con-
sider the case Γ ∈ G1,Γ ∩ C = {P}. Then we denote the partitions of Γ that
depend on P by Γ0,Γ1. We now introduce the images Γ�

j (j = 0, 1) of any
simple smooth curve Γ ∈ G as

(3.3) Γ�
j := B−1

j (Γ) (Γ ∈ G0), Γ�
j := B−1

j (Γ0) ∪B−1
1−j(Γ1) (Γ ∈ G1), j = 0, 1.

The images Γ�
j (j = 0, 1) of the smooth curves Γ ∈ G are simple smooth curves

of D�. In particular, we call inverse Blaschke-product images of hyperbolic line
segments the segments of plane D�.

We now establish a relationship between the weighted arc lengths

J (Γ) :=

t2∫

t1

σ0(Φ(t))|Φ�(t)| dt, J �(Γ�
j ) :=

t2∫

t1

σ(φj(t))|φ�
j(t)| dt,

where

σ0(z) :=
1

1− |z|2 , σ(z) :=
|B�(z)|

1− |B(z)|2
and Γ = {Φ(t) : t1 ≤ t ≤ t2}, Γ�

j = {φj(t) : t1 ≤ t ≤ t2} are parameterizations
of Γ and Γ�

j , respectively. We proceed to show

(3.4) J (Γ) = J �(Γ�
j ) (Γ ∈ G, j = 0, 1).

Based on (3.3), the following relationship holds between the parameteriza-
tions of Γ and Γ�

j :

Γ ∈ G0 ⇒ φj(t) = B−1
j (Φ(t)) (t1 ≤ t ≤ t2),

Γ ∈ G1 ⇒ φj(t) = B−1
j (Φ(t)) (t1 ≤ t ≤ t∗), φj(t) = B−1

1−j(Φ(t)) (t∗ ≤ t ≤ t2),

where Φ(t∗) ∈ C. Since
|B�(φj(t))||φ�

j(t)|
1− |B(φj(t)|2 =

| ddtB(φj(t))|
1− |B(φj(t)|2 ,

B(B−1
j (Φ(t))) = Φ(t), B(B−1

1−j(Φ(t))) = Φ(t),

then (3.4) indeed holds. From this and results from section two, the solutions
to the variational problem

min
Γ�∈G�

J �(Γ�)

are the transformations [z1, z2]
� of the hyperbolic line segments [z1, z2].
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4. Explicit form of inverted Blaschke-products

Finally we prove the explicit form of the mapping W → wj given in (3.1).
In the special case, when the two inverse poles of the Blaschke product are r
and −r, i.e. a = r = (r,−r) (r ∈ [0, 1))

Br(z) =
z − r

1− rz

z + r

1 + rz
= Br2(z

2) (z ∈ D),

therefore the inverse of twofold mapping W = Br(w) can be formally given as

w = B−1
r (W ) = (B−r2(W ))1/2 (W ∈ D).

Then the two solutions of Br(w) = W are

wj = vj , vj = (−1)j
√
v, v := B−r2(W ) (W ∈ D).

We note that the function v → √
v is analytic on D\ [−1, 0] and has a jump of π

on the points of the interval (−1, 0]. The inverse of the bijection B−r2 : D → D
is given as Br2 , therefore the discontinuity jumps of w → √

B−r2(w) occur at
the points

Cr := Br2((−1, 0]) = (−1, Br2(0) = (−1,−r2].

The function z0 =
√
v, v = B−r2(W ) (W ∈ D) maps D onto the half-disk D0.

In the general case let Bc (c = (c, �) ∈ B) be a function that maps the
interval [−r, r] onto the hyperbolic line segment connecting the points a0 and
a1: Bc(−r) = a0, Bc(r) = a1.

Then,
Bc−(a0) = −r, Bc−(a1) = r

holds for the inverse c− of c ∈ B, furthermore by (2.1) choosing appropriate
κ0, κ1, κ = κa := κ1κ2 ∈ T numbers yields the equation

Ba ◦Bc = (Ba0
◦Bc) (Ba1

◦Bc) = κ0B−r κ1Br = κB−rBr

where taking the function values at 1 we get κ = Ba(Bc(1)). Using this and
the equation

W = Ba(w) = (Ba ◦Bc)(Bc−(w)) = κBr2(B
2
c−(w))

we can give an explicit formula for w as a two-valued function of W :

(4.1) wj := B−1
j (W ) := Bc(vj), vj := (−1)j

√
v, v = B−r2(κw) (j = 0, 1),

which proves (3.1).
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