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Abstract. Given a probability space (Ω,A, P ), a real and separable Ba-
nach space X, a linear and continuous Λ : X → X with ‖Λ‖ < 1, and
an A–measurable and integrable ξ : Ω → X with the Fourier transform
γ : X∗ → C we characterize the weak limit of iterates of the random–
valued function f : X ×Ω→ X given by f(x, ω) = Λx+ ξ(ω) with the aid
of the functional equation

ϕ(x∗) = γ(x∗)ϕ(x∗ ◦ Λ).

Then, making use of this characterization, given a probability Borel mea-
sure µ on X we examine continuous at zero solutions ϕ : X∗ → C of the
equation

ϕ(x∗) = µ̂(x∗)ϕ(x∗ ◦ Λ).

1. Introduction

Fix a probability space (Ω,A, P ) and a real and separable Banach space X.
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Given a linear and continuous Λ : X → X and an A–measurable ξ : Ω→ X
consider the function f : X × Ω→ X given by

(1.1) f(x, ω) = Λx+ ξ(ω)

and its iterates defined by (see [7, 1.4])

f0(x, ω1, ω2, . . .) = x, fn(x, ω1, ω2, . . .) = f
(
fn−1(x, ω1, ω2, . . .), ωn

)
for n ∈ N, x ∈ X and (ω1, ω2, . . .) from Ω∞ defined as ΩN. It follows from
[6, Corollary 5.6 and Lemma 3.1] (see also [1, Theorem 3.1]) that if ‖Λ‖ < 1 and
ξ : Ω → X is integrable, then the sequence (fn(x, ·))n∈N of random variables
on the product probability space (Ω∞,A∞, P∞) converges in law to a random
variable independent of x ∈ X, i.e., for every x ∈ X the sequence

(
πfn(x, ·)

)
n∈N

of the distributions of (fn(x, ·))n∈N converges weakly to a probability Borel

measure πf on X; additionally∫
X

‖x‖πf (dx) <∞.

In [2] we characterized this limit distribution in the case where X is a real and
separable Hilbert space. It turns out that this characterization works also in
our case, in fact with the same proof.

2. A characterization of the limit distribution

The following theorem provides a characterization of πf via the functional
equation

(2.1) ϕ(x∗) = γ(x∗)ϕ(x∗ ◦ Λ)

for its Fourier transform ϕf : X∗ → C,

ϕf (x∗) =

∫
X

eix
∗xπf (dx),

where γ stands for the Fourier transform of ξ,

γ(x∗) =

∫
Ω

eix
∗ξ(ω)P (dω) for x∗ ∈ X∗.

Note that any two probability Borel measures on X with the same Fourier
transform are equal, see [5, p. 36].
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Theorem 2.1. Assume X is a real and separable Banach space, Λ : X → X
is linear and continuous, ξ : Ω → X is A–measurable, and f : X × Ω → X is
given by (1.1). If

‖Λ‖ < 1 and

∫
Ω

‖ξ(ω)‖P (dω) <∞,

then:

(i) the Fourier transform of πf is the only solution ϕ : X∗ → C of (2.1)
which is continuous at zero and fulfils ϕ(0) = 1;

(ii) if ϕ : X∗ → C is a continuous at zero solution of (2.1) and ϕ(0) = 0,
then ϕ = 0.

Proof. For n ∈ N define ξn : Ω∞ → X by ξn(ω1, ω2, . . .) = ξ(ωn) and note
that ξn, n ∈ N, are identically distributed: Denoting by ρ the distribution of ξ
we have

P∞(ξn ∈ B) = P (ξ ∈ B) = ρ(B)

for n ∈ N and Borel B ⊂ X. Since

fn(x, ω) = Λfn−1(x, ω) + ξn(ω) for x ∈ X, ω ∈ Ω∞,

and the random variables Λ ◦ fn−1(x, ·), ξn are independent, we see that

πfn(x, ·) =
(
πfn−1(x, ·) ◦ Λ−1

)
∗ ρ for n ∈ N, x ∈ X.

Hence, passing to the limit (cf. [8, Ch. III, Th. 1.1]),

πf = (πf ◦ Λ−1) ∗ ρ.

Consequently, see also [8, p. 58], for x∗ ∈ X∗,

ϕf (x∗) =

∫
X

eix
∗x
(
(πf ◦ Λ−1) ∗ ρ

)
(dx) =

=

∫
X×X

eix
∗(x+z)

(
(πf ◦ Λ−1)× ρ

)
(d(x, z)) =

=

∫
X

∫
X

eix
∗x · eix

∗z(πf ◦ Λ−1)(dx)

 ρ(dz) =

=

∫
X

eix
∗x(πf ◦ Λ−1)(dx)

∫
X

eix
∗zρ(dz)

 =

=

∫
X

eix
∗Λxπf (dx)

 γ(x∗) = ϕf (x∗ ◦ Λ)γ(x∗).
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To prove the uniqueness consider a continuous at zero solution ϕ : X∗ → C
of (2.1). Then

ϕ(x∗) = ϕ (x∗ ◦ Λn)

n−1∏
k=0

γ
(
x∗ ◦ Λk

)
for n ∈ N, x∗ ∈ X∗,

limn→∞ Λn = 0 and

|γ(x∗ ◦ Λk)| ≤ 1 for k ∈ N ∪ {0} and x∗ ∈ X∗.

Hence, if ϕ(0) = 1, then

ϕ(x∗) =

∞∏
n=0

γ (x∗ ◦ Λn) for x∗ ∈ X∗,

and if ϕ(0) = 0, then ϕ = 0. �

Remind that a probability Borel measure µ on a real and separable Banach
space X is called Gaussian (see [4, 1.3 and C.1], [5, p. 37]) if for every x∗ ∈ X∗
the measure µ ◦ x∗−1 is either a Dirac measure or a Gauss distribution on the
real line.

Note that by the Fernique theorem (see [5, Theorem 2.6]) every Gaussian
measure has finite moments.

Example 2.2. If X is a real and separable Banach space, Λ : X → X is linear
and continuous with ‖Λ‖ < 1, ξ : Ω → X is A–measurable and Gaussian, and
f : X × Ω→ X is given by (1.1), then πf is Gaussian.

Proof. By [4, 1.8] the Fourier transform γ of ξ has the form

γ(x∗) = eiL(x∗)− 1
2B(x∗,x∗) for x∗ ∈ X∗,

where L : X∗ → R is continuous and linear and B : X∗×X∗ → R is continuous,
bilinear and symmetric with B(x∗, x∗) ≥ 0 for x∗ ∈ X∗. Since

|L(x∗ ◦ Λn)| ≤ ‖L‖‖x∗‖‖Λ‖n for x∗ ∈ X∗, n ∈ N,

|B(x∗ ◦ Λn, z∗ ◦ Λn)| ≤ ‖B‖‖x∗‖‖z∗‖‖Λ‖2n for x∗, z∗ ∈ X∗ and n ∈ N,

the formulas

l(x∗) =

∞∑
n=0

L(x∗ ◦ Λn) for x∗ ∈ X∗,

b(x∗, z∗) =

∞∑
n=0

B(x∗ ◦ Λn, z∗ ◦ Λn) for x∗, z∗ ∈ X∗,
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define a continuous and linear function l : X∗ → R and a bilinear, symmetric
and continuous function b : X∗×X∗ → R such that b(x∗, x∗) ≥ 0 for x∗ ∈ X∗.
In particular, the function ϕ : X∗ → R given by

ϕ(x∗) = eil(x
∗)− 1

2 b(x
∗,x∗)

is continuous. It is easy to check that

l(x∗) = L(x∗) + l(x∗ ◦ Λ) and b(x∗, x∗) = B(x∗, x∗) + b(x∗ ◦ Λ, x∗ ◦ Λ)

for x∗ ∈ X∗ which shows that ϕ solves (2.1). By Theorem 2.1(i) and [4, 1.8]
we infer that ϕ is the Fourier transform of πf and πf is Gaussian. �

3. A functional equation

Assuming now that X is a real and separable Banach space, X 6= {0},
Λ : X → X is linear and continuous with ‖Λ‖ < 1, and µ is a probability Borel
measure on X, consider, following [3], the equation

(3.1) ϕ(x∗) = µ̂(x∗)ϕ(x∗ ◦ Λ),

where µ̂ denotes the Fourier transform of µ,

µ̂(x∗) =

∫
X

eix
∗xµ(dx) for x∗ ∈ X∗.

Clearly, µ̂ : X∗ → C is continuous, and if additionally µ has a finite first
moment, i.e., if

∫
X

‖x‖µ(dx) is finite, then µ̂ is of class C1,

µ̂′(x∗)z∗ = i

∫
X

(z∗x)eix
∗xµ(dx) for x∗, z∗ ∈ X∗,

and

|µ̂(x∗)− µ̂(z∗)| ≤

∫
X

‖x‖µ(dx)

 ‖x∗ − z∗‖ for x∗, z∗ ∈ X∗.

Theorem 3.1. If µ has a finite first moment, then there exists a probability
Borel measure ν on X with a finite first moment such that ν̂ solves (3.1), and
for any continuous at zero solution ϕ : X∗ → C of (3.1) we have

ϕ = ϕ(0)ν̂;

in particular, every continuous at zero solution ϕ : X∗ → C of (3.1) is of class
C1 and Lipschitz.
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We shall prove Theorem 3.1 letter on, together with the next one and with
the following remark.

Remark 3.1. If µ has a finite first moment and Λ(X) = X, then for every
c ∈ C the set of all discontinuous at zero solutions ϕ : X∗ → C of (3.1) such
that ϕ(0) = c and ϕ |X∗\{0} is of class C1 and Lipschitz has the cardinality at
least that of the continuum.

Theorem 3.1 implies that for every Borel and integrable with respect to µ
function ξ : X → X the equation

(3.2) ϕ(x∗) = ϕ(x∗ ◦ Λ)

∫
X

eix
∗ξ(x)µ(dx)

has exactly one continuous at zero solution ϕξ : X∗ → C such that ϕξ(0) = 1,
and it is of class C1 and Lipschitz. Consequently, we have the operator ξ 7→
7→ ϕξ, ξ ∈ L1(µ,X), and a kind of its continuity gives the following theorem.

Theorem 3.2. If ξ, η : X → X are Borel and integrable with respect to µ, then

∣∣ϕξ(x∗)− ϕη(x∗)
∣∣ ≤ ‖x∗‖

1− ‖Λ‖

∫
X

‖ξ(x)− η(x)‖µ(dx) for x∗ ∈ X∗.

Proof. Consider the σ–algebra B of all Borel subsets of X, the probability
space (X,B, µ) and, given Borel ξ : X → X integrable with respect to µ, the
function f : X × X → X defined by (1.1), as well as the limit distribution
πf . Put πξ = πf . According to Theorem 2.1(i), π̂ξ solves (3.2). Since the first
moment of πξ is finite, π̂ξ is of class C1 and Lipschitz.

Putting ν = πidX and applying Theorem 2.1 we get Theorem 3.1.

To prove Theorem 3.2 it is enough to observe that since ϕξ = π̂ξ, ϕ
η = π̂η

and

|eix
∗x1 − eix

∗x2 | ≤ ‖x∗‖‖x1 − x2‖ for x∗ ∈ X∗ and x1, x2 ∈ X,

by [3, Theorem 1] for every x∗ ∈ X∗ we have

∣∣∣ϕξ(x∗)− ϕη(x∗)
∣∣∣ =

∣∣∣∣∣∣
∫
X

eix
∗xπξ(dx)−

∫
X

eix
∗xπη(dx)

∣∣∣∣∣∣ ≤
≤ ‖x∗‖

1− ‖Λ‖

∫
X

‖ξ(x)− η(x)‖µ(dx).
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To verify the Remark given c ∈ C for every a ∈ C \ {c} define ϕa : X∗ → C
by

ϕa(x∗) = aν̂(x∗) for x∗ ∈ X∗ \ {0}, ϕa(0) = c,

and note that it solves (3.1), it is discontinuous at zero and ϕa |X∗\{0} is of
class C1 and Lipschitz. �
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