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LAUDATION TO

Professor Antal Járai

on his seventieth birthday

by Péter Burcsi (Budapest, Hungary)

1. Introduction

Antal Járai is truly a polymath: a mathematician by profession who has
made major contributions to the theory of functional equations, but he also
has publications in computer science and even geology, he designed a novel
kind of A/D converter, he is able to follow the latest results in physics and
writes chemistry books as a “hobby”. He has broken several world records in
computational mathematics, has influenced several generations as a mentor,
supervisor and research group leader in Debrecen, Paderborn and Budapest.
It is an impossible task to summarize his scientific achievements. Below, we
present highlights of his fruitful career.

2. Computer science and programming

He has been interested in electronic devices since his early years, reading
electronics books and building his own electronic projects. Computers fit into
this line and sparked his enthusiasm already in his first year at the university.
His first attempt at programming was to implement the simplex method –
characteristically of the era, the program did not work not because of his lack
of skills but because of a bad algorithm description in an economy textbook.
He continued to experiment with programming, learning ALGOL in 5 days for
example. When they learnt about the simplex method it at the university, he
also tested its practical running times by solving zero-sum two-player matrix
games.

He got involved in professional programming in the 80s. Due to the changes
at the end of the socialist era, one was allowed to found so-called Economic
Productive Communities (Gazdasági Munkaközösség – GMK), a kind of private
enterprise. This was a way to gain some extra salary for an underpaid young
researcher. The started to develop programs for enterprises in BASIC, but since
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they worked with floats and conversion on the Z80 machines was expensive,
they decided to move to assembly soon. One of the first pieces of commercial
software he developed was an arithmetic package started with help from his
wife during their honeymoon. He made an interpreter, resulting in a speedup
of the original arithmetic package by a factor of 20 to 30. He became more
involved in system programming, his wife continued to work on user programs.
During these years he developed a relational database software; a file manager
capable of handling virtual files for handling query records; a Forth compiler;
sorting and cryptographic algorithms; later also modifying operating systems
– altogether over 20 system programs.

His attitude towards programming meant he would always dig deep, un-
derstanding the machine to the last logic gate and looking for better algo-
rithms, optimizing every bit. This mindset would later be beneficial for his
research in computational mathematics. Several stories illustrate how thor-
ough he was. Due to commercial restrictions between capitalist and socialist
countries, software for socialist-produced hardware was scarce or not available,
opening many opportunities to develop missing software. When one of their
customers started using the Forth language, he modified his Forth compiler
to support timesharing, thus 5 instances could be run at the same time (on
only 64 KBs of memory, this might be one of the tiniest timesharing systems
ever!), enabling data recording, reading, searching, deleting and modifying on
20 terminals in parallel, boosting the customer’s efficiency. On another occa-
sion he wrote a disassembler, disassembled the operating system and modified
the poorly written disc handler to enable sorting an almost full disk in space
as fast as a disc copy had worked earlier.

After the birth of his daughter in 1986, he focused on mathematical research.
In the early 90s, he moved to Paderborn, Germany to work with Karl-Heinz
Indlekofer. He was the project manager of a group aiming to break records in
computational mathematics, e.g. the largest known pair of twin primes, Sophie
Germain primes etc. He thoroughly analyzed the available methods, made
projections on the expected progress made by competing research groups and
estimated the effort and time needed to implement and execute the algorithms.
This enabled him to select problems based on a well-established probability of
success. The success rate was around 50 percent, they held over 10 records at
the time. The effect of these projects are more than just a “sport achievement”:
the group implemented a Fast Fourier Transform and multiprecision arithmetic
functions, which have uses well beyond prime number search. The programs
were coded largely by him. The Paderborn years also saw him complete his
habilitation thesis.

He brought his insights from computer science and programming to ELTE
University too. He continued to lead projects in computational number the-
ory. He gave courses on “Compilers” and “High performance computing and
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computer architecture”. In a special course with his students they planned a
microprocessor based on Knuth’s RISC circuit but capable of supporting a true
time-sharing system as Minix. They wrote a simulator, an assembler and a C
compiler for it.

3. Functional equations

Antal Járai has made contributions in several areas of mathematics but his
results in the theory of functional equations stand out.

Much but not all of his work is related to the second part of Hilbert’s
fifth problem. In his celebrated address to the 1900 International Congress of
Mathematicians, in his fifth problem Hilbert asked (in the language of present
day mathematics) whether is it true that every locally Euclidean group is a Lie
group? In the second part of his fifth problem Hilbert goes on as follows:

“Moreover, we are thus led to the wide and interesting field of functional equa-
tions which have been heretofore investigated usually only under the assump-
tion of the differentiability of the functions involved. In particular the func-
tional equations treated by Abel (Oeuvres, vol. 1, pp. 1, 61, 389) with so
much ingenuity . . . and other equations occurring in the literature of mathe-
matics, do not directly involve anything which necessitates the requirements of
the differentiability of the accompanying functions. . . . In all these cases, then,
the problem arises: In how far are the assertions which we can make in the
case of differentiable functions true under proper modifications without this
assumption?” (Hilbert’s emphasis).

After this, Hilbert quotes a result of Minkowski, stating that under certain
conditions, the solutions of the functional inequality

f(x+ y) ≤ f(x) + f(y) x, y ∈ R

are partially differentiable, and remarks that certain functional equations, for
example the system of functional equations

f(x+ α)− f(x) = g(x)

f(x+ β)− f(x) = 0,

where α, β are given real numbers, may have solutions f which are continuous
but not differentiable, even if the given function g is analytic. This special case
is one of many examples showing that for one-variable equations continuity
does not usually imply differentiability.

The origins of the quest for regularity in functional equations thus go back
to Hilbert. Many of Antal Járai’s major contributions to the area of functional
equations are concerned with proving stronger regularity properties assuming
only weak regularity. We summarize some of his results below.
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3.1. A general strategy for solving functional equations

A general strategy for solving functional equations can be described as follows:

(A) Show how “weak” regularity implies “strong” regularity;

(B) Obtain a differential equation (integral equation, etc.) from the functional
equation;

(C) Solve this differential equation using the rich theory and algorithmic tools
for differential equations.

We note that today all three of the above steps are vastly supported by com-
puter algorithms, developed in part by his co-authors, colleagues and students,
e.g. Zs. Páles, A. Gilányi, A. Házy and S. Czirbusz.

The above three-step heuristic does not always work: for equations with
one variable we have Hilbert’s above mentioned counterexample. For iterated
equations (i.e. when the unknown function appears as an input as well), one
has the Aczél–Benz equation:

f
(
x+ f(y)

)
= f(x) + f

(
x+ y − f(x)

)
.

Continuous real solutions for this equations were analyzed by Z. Daróczy. The
function x �→ 1

2

(
x± |x|) is a solution.

Also, for what could be considered the “most general” equation without
iteration:

H
(
x, y, f

(
G(x, y)

)
, f0

(
G0(x, y)

)
, . . . , fn

(
Gn(x, y)

))
= 0

where the f ’s are the unknown functions, there is no regularity phenomenon
unless we make some additional assumptions. Thus, one of the main challenges
was to find the most general case of functional equations for which regularity
results can be stated. Antal Járai managed to prove theorems for such a large
class of equations.

3.2. The main problem

Antal Járai generalized earlier results by Andrade and Kac, summarized
in the book of Aczél. These classical results showed for some one-variable
equations that all continuous solutions are also C∞. He managed to generalize
these results in the following four senses.

• I. His theorems assume weak regularity, starting from C−1, i.e., from mea-
surability or from Baire property (sometimes called Baire-measurability
in the literature);
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• II. The unknown function can have several (real) variables;

• III. The equations to which the theorems apply can be strongly nonlinear;

• IV. It is sufficient for the equations to be satisfied only almost everywhere.

Based on this work, his student S. Czirbusz wrote software that can prove
regularity automatically.

To formulate his achievements on regularity, we define the setting for the
problem he investigated.

Problem 1. Let X, Y , and Z be open subsets of Rr, Rs, and Rt, respectively,
and let D be an open subset of X × Y and let W be an open subset of D×Zn.
Let f : X → Z, gi : D → X (i = 1, 2, . . . , n), and h : W → Z be functions.
Suppose that

(FE) if (x, y) ∈ D then

(
x, y, f

(
g1(x, y)

)
, . . . , f

(
gn(x, y)

)) ∈ W

and

f(x) = h
(
x, y, f

(
g1(x, y)

)
, . . . , f

(
gn(x, y)

))
;

(S) h and gi (i = 1, 2, . . . , n) are in C∞;

(RC) for each x ∈ X there exists a y for which (x, y) ∈ D and ∂gi
∂y (x, y) has

rank r = dim(X) (i = 1, 2, . . . , n).

Is it true that every f , which is in C−1 (i.e., measurable or has the Baire
property) is in C∞?

Note the “rank condition” (RC) that rank ∂gi
∂y = r, which implies dim(Y ) =

= s ≥ r.

The transfer principle. One might ask whether the use of only one
unknown function is too restrictive? It turns out that if we have a general non-
composite functional equation with several variables and several unknown func-
tions, and we can express each unknown function from it, then (after writing
different variables in each equation) we may consider a vector-valued function
having the different unknown functions as coordinates and use results concern-
ing equations with only one, but vector-valued unknown function. This shows
how important it is to discuss vector-valued unknown functions with vector
variables.
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The above problem is well-formed in the following sense. None of
the conditions of the problem above can be omitted without introducing new
conditions. This justifies that the above problem can be called “the main reg-
ularity problem of non-composite functional equations with several variables”.

We note that Sincov’s equation (for example from introduction of thermo-
dynamical temperature scale) shows that the rank condition cannot be simply
omitted:

f(x1, x2) = f(x1, y) + f(y, x2), x1, x2, y ∈ R.

No regularity, one has f(x1, x2) = g(x1)− g(x2).

3.3. The main results

In several papers, he published many results on the main regularity problem.
Put together, these partial answers for the regularity problem basically solve
it. For practically all problems one encounters, for which the conditions of
the main problem hold, the partial results can be used to prove regularity –
sometimes with a bit of additional manual manipulation of the equations. Not
even the compactness conditions are restrictive. Perhaps the following three
theorems stand out of the many published results by him.

Partial answer. If X is a compact manifold then every C−1 solution f is in
C∞.

Partial answer. If equation (FE) is quasilinear:

f(x) =

n∑
i=1

hi

(
x, y, f

(
gi(x, y)

))
,

where the functions gi and hi : D × Z → Rt are in C∞, then every solution
f ∈ C−1 is in C∞.

Partial answer. If there exists a compact subset C of X such that for each
x ∈ X there exists a y ∈ Y satisfying gi(x, y) ∈ C besides other conditions,
then every C−1 solution f is in C∞. (This also hold on manifolds.)

The additional compactness condition in this theorem is retained by the
transfer principle.

We note that some refinements of the problem by M. Laczkovich, Zs. Páles
and A. Gilányi have implications for regularity of composite equations.

3.4. Almost solutions

A typical situation where measurable almost solutions of functional equa-
tions arise naturally are characterization problems of probability distributions.
A prototype of such results is the well-known theorem stating that if ξ and η
are independent random variables and ξ + η and ξ − η are independent, too,



Laudation to Professor Antal Járai 11

then all have normal distributions. Supposing that ξ, η, ξ + η, and ξ − η have
density functions fξ, fη, fξ+η, and fξ−η, respectively, we obtain that

fξ+η(u)fξ−η(v) = 2fξ(u+ v)fη(u− v)

for almost all (u, v) ∈ R2. Other typical situations where measurable almost so-
lutions of functional equation appear are harmonic analysis, distribution meth-
ods for solving functional equations and functional equations arising by differen-
tiation of functional equations almost everywhere. The following deep theorem
was proved by Antal Járai for almost solutions of functional equations.

Theorem. Let Z be a regular space, Zi (i = 1, 2, . . . , n) topological spaces, and
T a first countable topological space. Let Y be an open subset of Rk, Xi an
open subset of Rri , D an open subset of T × Y , and W ⊂ D × Z1 × · · · × Zn.
Let T � ⊂ T be a dense subset, f : T � → Z, gi : D → Xi, and h : W → Z.
Suppose that the function fi is almost everywhere defined on Xi with values in
Zi and the following conditions are satisfied:

(1) for all t ∈ T � for almost all y ∈ Dt we have

(
t, y, f1

(
g1(t, y)

)
, . . . , fn

(
gn(t, y)

)) ∈ W

and
f(t) = h

(
t, y, f1

(
g1(t, y)

)
, . . . , fn

(
gn(t, y)

))
;

(2) for each fixed y in Y , the function h is continuous in the other variables;

(3) fi is Lusin λri measurable on its domain;

(4) gi and the partial derivative ∂gi
∂y is continuous on D;

(5) for each t ∈ T there exists a y such that (t, y) ∈ D and the partial
derivative ∂gi

∂y has rank ri at (t, y) ∈ D.

Then f has a unique continuous extension to T .

3.5. Steinhaus type-theorems and zero-one laws for functional equa-
tions

A famous theorem of Steinhaus from 1920 asserts that, for any measurable
set AR with positive Lebesgue measure the set A ⊂ R contains an interval.

This theorem allows various generalizations and modifications. Such results
are of independent interest but also have implications for functional equations.
In the generalizations the following problem is treated: if we replace the sub-
traction by a binary operation F (x, y), under what conditions on F can we
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prove that F (A,B) contains a nonvoid open set? The first step was done by
Erdős and Oxtoby proving in the case x, y ∈ R that, if F is a continuously differ-
entiable function with non-vanishing partial derivatives, then F (A,B) contains
a nonvoid open set.

We will treat a generalization for function F with more than two variables.
Of course, if F maps R×R×R into R we obtain a problem already solved by
the theorem of Erdős and Oxtoby. To obtain a really interesting new problem,
we have to consider a function with values in R2. The condition about the
nonvanishing partial derivatives will be substituted with the condition that the
null space of the derivative (as a linear map) is in general position. Antal Járai
obtained the following general theorem.

Theorem. Let X be an r-dimensional Euclidean space, and let X1, . . . , Xn

be orthogonal subspaces of X with dimensions r1, . . . , rn. Suppose, that ri ≥ 1
(1 ≤ i ≤ n) and

∑n
i=1 ri = r. Let U be an open subset of X and F : U → Rm

be a continuously differentiable function. For each x ∈ U let Nx denote the
null space of F ′(x). Let Ai be a subset of Xi (i = 1, . . . , n). If Nx is in general
position, i.e. dimNx = r −m and pi(Nx) = Xi for all x ∈ U (i = 1, 2, . . . , n),
moreover A1 × A2 × . . . × An ⊂ U , λri(Ai) > 0 (i = 1, 2, . . . , n), and the set
Ai is λri measurable for 2 ≤ i ≤ n, then F (A1 × . . .×An) contains a nonvoid
open set.

One implication of this Steinhaus-type theorem is on functional equations
in multiplicatice form. Several equations arising from probability theory has
multiplicative form. For these the following theorem is important.

Theorem. Suppose that the 0–1 valued functions fi, i = 1, . . . ,m and gj,
j = 1, . . . , n are Lebesgue measurable and the functional equation

(MFE)
m∏
i=1

fi(xi) =

n∏
j=1

gj(yj)

is satisfied almost everywhere on X1 × · · · ×Xm, where

(1) the domains Xi and Yj of the unknown functions fi, i = 1, . . . ,m and
gj, j = 1, . . . , n, respectively, are nonvoid connected open sets of finite
dimensional Euclidean spaces;

(2) the inner functions y1, . . . , yn of x1, . . . , xm are such that the mapping F :
(x1, . . . , xm) �→ (y1, . . . , yn) is a one-to-one C1-mapping of the Cartesian
product of the Xi’s to the Cartesian product of the Yj’s and its inverse
mapping G : (y1, . . . , yn) �→ (x1, . . . , xm) is also C1-mapping, hence both
are C1-diffeomorphisms;



Laudation to Professor Antal Járai 13

(3) fixing any of the vector variables xi (i = 1, . . . ,m) and choosing any of
the dependent vectors yj j = 1, . . . , n, the corresponding mapping is a
submersion, i. e., its derivative has rank equal to the dimension of the
chosen dependent vector, and the same remains true if we change the
roles of xi, i = 1, . . . ,m and yj j = 1, . . . , n.

Then either on both sides one of the functions is zero almost everywhere or all
of the functions fi, i = 1, . . . ,m and gj, j = 1, . . . , n are equal to 1 almost
everywhere.

The proof depends an “almost” version of the previous Steinhaus type the-
orem.

Corollary. Let us suppose that the real valued functions fi and gj satisfies
(MFE) almost everywhere and (1)–(3) are also satisfied. Then either on both
sides one of the functions is zero almost everywhere, or the functions fi and gj
are almost equal to real valued nonzero C∞-functions satisfying (MFE) every-
where.

3.6. Equations with few variables

The first general regularity results which overcome the difficulty when the
“rank condition” is not satisfied were given by Światak. She applied her distri-
bution method to generalizations of the mean value equation. She investigated
the equation

(1)

n∑
i=1

hi(x, y)f
(
gi(x, y)

)
= h0(x, y),

(2) x ∈ Rr, y ∈ Y ⊂ Rs.

with unknown function f and proved that C =⇒ C∞

Regularity results for functional equations with “few” variables, i. e. with r
place unknown function but with less than 2r (but more than r) variables have
been proved. These have the structure f ∈ Cq−1 =⇒ f ∈ Cq for q = 0, 1, . . .
where C−1 is understood as the class of measurable functions or as the class
of functions having the property of Baire. Most of the results can be applied
for equation (1) except f ∈ C0 =⇒ f ∈ C1 which is proved only for special h
linear in the f -terms.

The proofs use special function spaces, which — roughly speaking — in-
terpolate between measurability and continuity, between Baire property and
continuity and between continuity and continuous differentiability. Although
the general theory can be applied for systems of functional equations with sev-
eral unknown functions, here only less general but easy to apply corollaries for
the case of one unknown function will be given.
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Antal Járai has made recent contributions to the area of functional equa-
tions where the rank condition (RC) is lacked. Instead of stating his theorems
in the most general abstract form, we give a few corollaries. The key difficulties
lie in proving continuous differentiability from continuity. One important tool
is the investigation of “critical subspaces”.

Corollary 1. Let X ⊂ Rr be an open set and f : X → Rm a function. Suppose
that

(LFES) the linear functional equations

f(x) = hi,0(x, y) +

ni∑
j=1

hi,j(x, y)f
(
gi,j(x, y)

)

are satisfied, whenever i ∈ I, (x, y) ∈ Di (here I is an index set), more-
over

(S2) Di ⊂ X × Yi is an open set, Yi is a Euclidean space, the functions
hi,0 : Di → Rm and hi,j : Di → R are in C1, the functions gi,j : Di → X
are in C2, moreover

(D) for each x ∈ X and for each proper linear subspace V of Rr there exists
an i ∈ I and a y such that (x, y) ∈ Di and

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
> dim(V )

whenever 1 ≤ j ≤ ni.

Then f ∈ C0 implies f ∈ C1.

Observe, that if dim(Yi) > 0, then the dimension condition (D) is satisfied
“in general”, because “in general”

det

(
∂gi,j
∂x

(x, y)

)
�= 0, dim

(
∂gi,j
∂x

(x, y)(V )

)
= dim(V ),

rank

(
∂gi,j
∂y

(x, y)

)
= min

{
r, dim(Yi)

}
> 0.
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Corollary 2. Let Xr
R be an open set and f : X → Rm a function. Suppose

that

(FES) we have (
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni

(x, y)
)) ∈ Wi

and the functional equation

f(x) = hi

(
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni

(x, y)
))

is satisfied, whenever i ∈ I, (x, y) ∈ Di (here I is an index set), moreover

(SI) Di ⊂ X × Yi is an open set, Yi is a Euclidean space, Wi is an open
subset of Di × (Rm)ni , all the partial derivatives ∂α0

t ∂α1
z1 . . . ∂

αni
zni

hi of the
functions hi : Wi → Rm are continuously differentiable, the functions
gi,j : Di → X are in C∞, moreover

(D) for each x ∈ X and for each proper linear subspace V of Rr there exists
an i ∈ I and a y such that (x, y) ∈ Di and

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
> dim(V )

whenever 1 ≤ j ≤ ni.

Then f ∈ C1 implies f ∈ C∞.

Critical subspaces. Let X ⊂ Rr be an open set and for each i ∈ I let
Di ⊂ X×Yi be an open set, where Yi is a Euclidean space and let the functions
gi,j : Di → X, 1 ≤ j ≤ ni be in C1. Suppose, that for each x ∈ X there is a
i ∈ I and a y such that (x, y) ∈ D. For a proper linear subspace V of Rr we
will say that it is a critical subspace at x if for each i ∈ I and for each y for
which (x, y) ∈ Di we have

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)
≤ dim(V )

for some 1 ≤ j ≤ ni.

It is clear, that the dimension condition (D) can be formulated on the way
that there is no critical subspace for any x ∈ X. It is also clear that if a linear
subspace V is critical then any proper linear subspace of Rr containing V is
critical too. Hence it is enough to consider minimal critical linear subspaces.
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Sincov equation. For the Sincov equation

(3) f(x1, x2) = f(x1, y) + f(y, x2), x1, x2, y ∈ R

if we try to apply our general results, we find the coordinate axis as critical
subspaces. In this case we cannot remove these with substitutions, as in several
other cases. Let us observe the connection of the critical directions with the
general solution f(x1, x2) = g(x1)− g(x2).

Corollary 3. Let X ⊂ Rr be an open set, f : X → Rm a function and let
K ⊂ {0, 1, . . . , r} containing 0 and r. Suppose that

(FES) we have (
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni

(x, y)
)) ∈ Wi

and the functional equation

f(x) = hi

(
x, y, f

(
gi,1(x, y)

)
, . . . , f

(
gi,ni

(x, y)
))

is satisfied, whenever i ∈ I, (x, y) ∈ Di (here I is an index set), moreover

(S1) Di ⊂ X×Yi is an open set, Yi is a Euclidean space, Wi is an open subset
of Di× (Rm)ni , for all y ∈ Yi, hi is continuous in the other variables and
the functions gi,j : Di → X are in C1, moreover

(CD) for each x0 ∈ X and for each proper linear subspace V0 of Rr with k0 =
= dim(V0) ∈ K there exists an i ∈ I and a y0 such that (x0, y0) ∈ Di and

dim

(
∂gi,j
∂x

(x, y)(V ) + rng
∂gi,j
∂y

(x, y)

)

is the same constant k in K and greater than k0 for 1 ≤ j ≤ ni, whenever
x is close enough to x0, y is close enough to y0 and V is close enough to
V0 in the Grassmann manifold G(r, k).

Then f ∈ C−1 implies f ∈ C0.

Here again if dim(Yi) > 0, the “constant dimension” condition (CD) is
satisfied “in general”, but not if there is a critical subspace for some x ∈ X.

To this day he remains active and he is opening new attack lines on regu-
larity and many more interesting challenges in functional equations and other
math topics.
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4. Closing thoughts

Working as a student and colleague with Antal has been a privilege for
many of us. However intimidatingly bright his achievements and ideas seemed
to us, he has always been approachable and open to discussions on and beyond
mathematics and computer science. In the name of all colleagues at ELTE who
have been lucky to work with him and learn from him, I wish him many more
happy productive years to come.




