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Abstract. Recent investigations led to the definition of p-eigenvectors:
such vectors for a matrix, that the fraction of the vector norms of the
matrix-vector product and the nonzero vector (as in defining a natural
matrix norm) is independent of the applied p-norm. This paper elaborates
this concept further, presenting general results, proof of existence for arbi-
trary matrices, and constructing new solutions in the case of 3×3 diagonal
matrices.

1. Introduction

We elaborate on the topic of p-eigenvectors, introduced in [3]. The men-
tioned paper laid down the foundations for this area, solved some basic prob-
lems (such as the case of 2×2 diagonal and rotation matrices), and formulated
many related questions. Solutions for many of the raised questions will be
presented, e.g.
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• The existence and construction problem of non-trivial p-eigenvectors for
general matrices of Rn×n (n ≥ 2).

• Further, previously unknown p-eigenvectors of diagonal matrices are de-
scribed numerically, analytically and visually.

1.1. Preliminaries

Recall the power norms or p-norms for vectors of Rn with 2 ≤ n ∈ N:

‖.‖p : Rn → R, ‖x‖p =

(
n∑

k=1

|xk|p
)1/p

(p ∈ [1,∞)) ,

and
‖x‖∞ =

n
max
k=1

|xk| .

It is well known that limp→∞ ‖x‖p = ‖x‖∞ (x ∈ Rn). Let us now consider a

matrix A ∈ Rn×n. The p-norm of A is defined as

‖.‖p : Rn×n → R, ‖A‖p = sup
x �=0

‖Ax‖p
‖x‖p

(p ∈ [1,∞]) .

Definition 1 (p-eigenvectors, cf. [3], Definition 2). Given a matrix A ∈
∈ Rn×n (2 ≤ n ∈ N), a vector x ∈ Rn, x �= 0 shall be called a p-eigenvector of
A, if there exists a constant γ ∈ R+

0 , such that for all p ∈ [1,∞]:

‖Ax‖p
‖x‖p

= γ.

The value γ is the p-eigenvalue associated with the p-eigenvector x.

Remark that regular eigenvectors are trivial p-eigenvectors, that p ∈ (0, 1)
may also be considered, and that one may also speak of p-eigendirections.

A basic finding of [3] was that in the most simple case with a, b > 0, for the
diagonal matrix

A =

(
a 0
0 b

)
∈ R2×2 the vector x =

(
±
√
b

±
√
a

)
,

is a (non-trivial) p-eigenvector. Real valued non-trivial p-eigenvectors of 2× 2
rotation matrices have also been described in a similar manner.

A straightforward tool to visualize the behaviour of the fraction in Defini-
tion 1 and to spot the p-eigenvectors was introduced, the so-called induction
set (induction curve, induction surface in low dimensions), this shall be recalled
and used in Section 3.4.
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2. General results

In this section, we provide a characterization for p-eigenvalues and eigen-
vectors of a matrix A ∈ Rn×n, based on regular eigenvalues and eigenvectors
of some specific matrices obtained by transforming A. We also discuss some
observations regarding the number of p-eigenvalues of a matrix.

2.1. Characterization using regular eigenpairs

First, let us present the following useful observation.

Lemma 1. Suppose that x = (x1, . . . , xn) ∈ Rn is a p-eigenvector of A ∈ Rn×n

with the p-eigenvalue γ ≥ 0. Then, there exists a permutation π : {1, . . . , n} →
→ {1, . . . , n} such that

|(Ax)i| = γ
∣∣xπ(i)

∣∣ , (i = 1, . . . , n).

Proof. Let us notate the vector Ax ∈ Rn by y = (y1, . . . , yn) ∈ Rn. We
prove our claim by constructing such a permutation π. By the definition of
p-eigenvalues we have ‖Ax‖∞ = ‖y‖∞ = γ‖x‖∞, i.e.

n
max
k=1

|yk| = γ
n

max
k=1

|xk|,

consequently there exists a pair of indices i, j ∈ {1, . . . , n} such that |yi| = γ|xj |,
so let π(i) = j.

Now, for any 1 ≤ p < ∞ we have

(
n∑

k=1

|yk|p
)1/p

= γ

(
n∑

k=1

|xk|p
)1/p

,

consequently
n∑

k=1

|yk|p =

n∑
k=1

γp|xk|p.

Since |yi|p = γp|xj |p, we conclude that

n∑
k=1
k �=i

|yk|p =

n∑
k=1
k �=j

γp|xk|p,

and so 


n∑
k=1
k �=i

|yk|p




1/p

= γ




n∑
k=1
k �=j

|xk|




1/p

.
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Introducing two new the vectors x′ = (x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1 and
y′ = (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Rn−1, we find that ‖x′‖p = ‖y′‖p holds for
every p ∈ [1,∞).

By taking the limit as p → ∞, we also get ‖x′‖∞ = ‖y′‖∞, so now we can re-
peat the same process to find a new pair of corresponding indices, constructing
a suitable permutation π in n steps. �

We remark that the permutation π is not unique in general, as the infin-
ity norm of x and y can be equal to the absolute values of multiple entries.
However, if the absolute values of the entries of x are pairwise different, it is
unique.

Interpreting this result, for all of the p-eigenvectors x ∈ Rn of a matrix
A ∈ Rn×n, we must have that the vector Ax ∈ Rn contains a permutation of ±1
times the entries of γx, i.e. γxi = ±(Ax)π(i) for some π ∈ Sn (where Sn denotes
the symmetric group over n elements). Notate the matrix representation of π
as the permutation matrix P ∈ Sn, and observe that the sign setting for each
entry of (Ax) ◦ π can be identified with a multiplication by a diagonal matrix
having ±1 values on its main diagonal.

So we have that, for any p-eigenvector, the relation

I±PAx = γx,
(
P ∈ Sn, I

± = diag(±1,±1, . . . ,±1) ∈ Rn
)

must hold with some γ ≥ 0. In fact, the set of product matrices I±P is finite
group of order 2nn! (every pair of I± and P defines a unique element), which
we notate by S±

n from now on, and refer to its elements as signed permutations.

This leads us to the vital conclusion that every p-eigenvector must also be a
regular eigenvector, corresponding to a nonnegative real eigenvalue of at least
one of the finitely many matrices P±A ∈ Rn×n, where P± ∈ S±

n . Now it just
remains to observe that if the real λ ≥ 0 with 0 �= v ∈ Rn is an eigenvalue-
eigenvector pair of a matrix P±A ∈ Rn×n, then we have

‖Av‖p = ‖P±Av‖p = ‖λv‖p = λ‖v‖p, (p ∈ [1,∞]) ,

a p-eigenvalue with a p-eigenvector. Notice that if a matrix P±A ∈ Rn×n has a
negative real eigenvalue λ < 0, then (−1) ·P±A has the eigenvalue (−1) ·λ > 0
with the same eigensubspace.

Summarizing our train of thought, we have the following result.

Theorem 1. The vector 0 �= x ∈ Rn is a p-eigenvector of A ∈ Rn×n with
p-eigenvalue γ ≥ 0 if and only if there exists a transformation P± ∈ S±

n such
that γ and x is an eigenvalue-eigenvector pair of P±A ∈ Rn×n.

Provided we can efficiently find the regular eigenpairs of a matrix, this result
also gives us a practical algorithm for finding p-eigenvectors and eigenvalues, as
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we can cycle through the 2nn! elements of the group S±
n , and solve the regular

problem for each. Technically, it is enough to consider 2n−1n! elements, because
after checking P± we can skip (−1) ·P±. However, this method is only efficient
for smaller values of n.

2.2. Number of p-eigenvalues and eigenvectors

Now we may define the algebraic multiplicity of a p-eigenvalue as the sum
of its algebraic multiplicities over all possible signed permutations of A, and
say that the number of p-eigenvalues of a matrix is the sum of algebraic mul-
tiplicities of distinct p-eigenvalues.

Based on Theorem 1 and our corresponding remarks, it is imminent that
the number of p-eigenvalues has the following upper bound.

Corollary 1. The number of p-eigenvalues (with multiplicity) of a matrix A ∈
∈ Rn×n cannot be greater than n · 2n−1n!.

However, it is unclear if this number or anything close to it may be reached
for arbitrary values of n, i.e. if there exists a matrix A ∈ Rn×n with this number
of p-eigenvalues. The particularly interesting part would be to solve the open
problem whether or not the following conjecture is true.

Conjecture 1. For every n = 2, 3, . . . there exists a matrix A ∈ Rn×n such
that for every permutation P ∈ Sn, all the eigenvalues of PA are real.

In our experiments, we have verified that this is true up until n = 7, but
solving it in general could be a subject of future research. We provide two
example matrices below.

M3 =



1 4 8
0 1 4
0 0 1


 , M7 =




1 217 232 245 256 265 272

0 1 218 232 245 256 265

0 0 1 9 · 214 171 · 226 245 256

0 0 0 1 9 · 214 232 245

0 0 0 0 1 218 232

0 0 0 0 0 1 217

0 0 0 0 0 0 1




.

In the following, we study the problem of counting p-eigenvalues of diag-
onal matrices through constructing directionally distinct p-eigenvectors. Two
vectors will be called directionally distinct, if they are not collinear.

The notation diag(a, b, c) will be used to denote a diagonal matrix with
entries a, b and c on its main diagonal, respectively.

In the previous work [3], the case of 3×3 diagonal matrices was investigated
in detail. It turns out that, based on Theorem 1, we may now investigate the
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number of p-eigenvectors of a D = diag(d1, . . . , dn) ∈ Rn×n diagonal matrix.
We may assume it has positive di > 0 entries.

In order to have a p-eigenvector x ∈ Rn, the equation

Dx = γP±x

must hold with some signed permutation P± ∈ S±
n , i.e. with a permutation

π ∈ Sn we have
dixi = ±γxπ(i), (i = 1, . . . , n).

The permutation π may be decomposed into disjoint cycles. Suppose that
the orbit of 1 consists of k elements of {1, . . . , n}, i.e.

d1x1 = ±γxπ(1);

dπ(1)xπ(1) = ±γxπ2(1);

...

dπk−1(1)xπk−1(1) = ±γx1.

Combining these, we obtain the relation

d1dπ(1)dπ2(1) · · · dπk−1(1)x1 = ±γkx1,

so the p-eigenvalue must be γ = k

√
|d1dπ(1)dπ2(1) · · · dπk−1(1)|. By choosing an

arbitrary x1 �= 0 value, or, since any scalar multiple of x is also a corresponding
p-eigenvector, by setting x1 = 1, we can solve through the above equations and
choose arbitrary ± signs for each entry xπ(1), xπ2(1) . . . , xπk(1).

Now, if we set xj = 0 for all j ∈ {1, . . . , n} \ {1, π(1), . . . , πk−1(1)}, it is
easy to verify that x is a p-eigenvector for the above γ: the same equations for
every other cycle in π become 0 = 0 identities.

Based on this observation, we can immediately get a lower estimation for
the number of p-eigenvectors.

Theorem 2. Every D = diag(d1, . . . , dn) ∈ Rn×n diagonal matrix has at least

3n − 1

2

directionally distinct p-eigenvectors and eigenvalues (with multiplicity).

Proof. Notice that for the described construction, we could choose any k-
element subset of {1, . . . , n}, (as we can identify any derangement [1] of its
elements to a cycle in the decomposition of a permutation of the whole set),
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and we can choose the signs of k − 1 vector entries, so we have constructed at
least

n∑
k=1

(
n

k

)
2k−1 =

1

2

(
−1 +

n∑
k=0

(
n

k

)
2k

)
=

3n − 1

2

different (i.e. directionally distinct) p-eigenvectors. The reason for this is that
for different subsets of {1, . . . , n}, the construction always gives directionally
distinct eigenvectors, obviously. �

Omitting the division by 2 can be interpreted as considering a unit norm
p-eigenvector and its (−1) scalar multiple distinct, and as such gives a lower
bound on the number of intersections of induction curves/surfaces.

Compare this result to Lemma 1 and Corollary 1 of [3]: we find that this
estimation is sharp for n = 2, and constructs all distinct p-eigenvectors. How-
ever, it is far off from the theoretical upper bound of our Corollary 1 as n
increases, so we may try to improve it.

We should investigate if, for a given subset of diagonal entries, there exists
different derangements yielding the same eigenvectors or not (because in this
case, due to the normalization requiring the first nonzero entry to be 1 for the
constructed vectors, two eigenvectors are not directionally distinct exactly if
they are equal).

It turns out that with an additional (mild) assumption on the diagonal
entries, we can compute the exact number of p-eigenvectors and eigenvalues.

Theorem 3. Suppose that the diagonal matrix D = diag(d1, . . . , dn) ∈ Rn×n

has the following property: for every subset I ⊂ {1, 2, . . . , n}, the values

γI :=

(∏
i∈I

|di|

)1/|I|

are pairwise distinct. Then, the number of directionally distinct p-eigenvectors
and eigenvalues (with multiplicity) of D is exactly

n∑
k=1

(
n

k

)
2k−1

[
k!

e

]
,

where [x] is the nearest integer function.

Proof. With the described property at hand, we can see that for any permu-
tation π ∈ Sn, exactly one of its cycles has to contain every nonzero entry of x:
otherwise, if there are nonzero entries for at least two disjoint cycles of indices
I, J ⊂ {1, 2, . . . , n}, I ∩ J = ∅, then the p-eigenvalue for x must be γI and γJ
at the same time, but we have γI �= γJ .
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Consequently, we can enumerate all possible p-eigenvectors by first choosing
a subset I ⊂ {1, 2, . . . , n} for the indices of nonzero entries of x, and then choose
a derangement of its elements to represent the cycle itself, finally set the first
nonzero entry to 1 and solve the system of equations with every possible choice
of signs for the entries.

We already know from the proof of Theorem 2, that for a given k = |I| =
= 1, 2, . . . , n, there are

(
n
k

)
possible subsets, and that there are 2k−1 options

for choosing the signs. The number of derangements of k elements is known
(see e.g. [2]) to be

!k = k!
k∑

i=0

(−1)i

i!
=

[
k!

e

]
.

So we have the upper bound for the number of directionally distinct eigenvec-
tors at

n∑
k=1

(
n

k

)
2k−1·!k.

Finally, if we can show that all these constructed p-eigenvectors are direc-
tionally distinct, then our proof is complete. As we saw earlier, different choices
of I always yield distinct eigenvectors corresponding to different eigenvalues,
and different choices of signs also give directionally distinct vectors, so we only
left to prove that there are no two different derangements of I that give us the
same vector x.

Notate the smallest element of I by i, and suppose there exists two derange-
ments π, π̃ : I → I generating the same x solution. We may assume that we
have π(i) �= π̃(i). Since both are derangements over I, there exists an integer
1 < l < |I| such that π̃(i) = πl(i).

Now from the equations for π̃, it follows that

xπ̃(i) =
±di
γI

,

and from the equations for π we also have

xπ̃(i) = xπl(i) =
±didπ(i)dπ2(i) · · · dπl−1(i)

γl
I

.

But now, simplifying this equation implies that the relation

γI = l−1

√∣∣dπ(i)dπ2(i) · · · dπl−1(i)

∣∣

must hold, i.e. for the index set J :=
{
π(i), π2(i), . . . , πl−1(i)

}
we have γJ =

= γI , a contradiction, so for different derangements we always get directionally
distinct p-eigenvectors.
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Notice that if any pair of the constructed vectors would originate from the
same eigensubspace of a γI p-eigenvalue for some permutation, then all their
infinitely many linear combinations should be p-eigenvectors as well, which
clearly cannot happen, as we have constructed every possible solution under
normalization. So the number of p-eigenvalues is the same as the number of
constructed vectors. �

Remarks. 1. By the proof, it is also clear that the γI values are the corre-
sponding p-eigenvalues, and that the multiplicity of any γI is exactly

2|I|−1

[
|I|!
e

]
.

2. By saying that the assumption on the diagonal entries is mild, we mean
that in fact it is true for almost every Rn vector of diagonal entries, we leave
the details for our reader to work out. Nonetheless, a simple choice of integer
diagonal entries would be a set of any n distinct primes {p1, . . . , pn}: in this
case, γI = γJ for two subsets of indices I, J would mean that we have

(∏
i∈I

|pi|

)|J|

=


∏

j∈J

|pj |




|I|

,

which cannot happen if I �= J .

3. The number of p-eigenvalues (with multiplicity) in this case turns out
to be comparable to the theoretical maximum. In fact, we have the following
result.

Corollary 2. For the class of restricted diagonal matrices of Theorem 3, the
number of directionally distinct p-eigenvectors is asymptotically

n! · 2n−1

√
e

.

Proof. We have that
n∑

k=1

(
n

k

)
2k−1

[
k!

e

]
≈

n∑
k=1

n!

k!(n− k)!
2k−1 k!

e
=

n!

e

n∑
k=1

2k−1

(n− k)!
,

so with the change of index k → n− k this equals to

=
n! · 2n−1

e

n−1∑
k=0

(1/2)k

k!
≈ n! · 2n−1

e

√
e. �

4. Finally, we note that if we omit our restriction for the diagonal entries,
determining the exact number of p-eigenvalues becomes much more tricky.
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• On one hand, there could be additional vectors which we didn’t take into
consideration. E.g. if we have disjoint I, J subsets for which γI = γJ ,
then we have infinitely many directionally distinct x solutions originating
from higher dimensional eigensubspace of γI for some permutation. To
see this, may once again construct every x solution corresponding to the
derangements of I, and also every x corresponding to derangements of
J , but now we can see that for these two orthogonal vectors, every linear
combination is also a solution, and so a p-eigenvector. We provide an
example of this in our detailed discussion of the 3 × 3 case in the next
section.

• Also, now choosing a subset I doesn’t guarantee that all the derangements
over I generate directionally distinct solutions, so there may be coinciding
p-eigenvectors which the theorem’s formula counts multiple times. We
state without proof the fact that this can only happen if n ≥ 5, and
provide the following numerical example: Let n = 5, I = {1, 2, 3, 4, 5},
and

D = diag

(
2,

1

2
, 1, 3,

1

3

)
∈ R5×5.

Now we can easily verify that the derangements (12345) and (12453) both
generate the same solutions x = (1,±2,±1,±1,±3).

3. Some constructive results for 3 × 3 diagonal matrices

It was already clear from Lemma 1, Theorem 1 and Example 4 of [3] that
a 3 × 3 diagonal matrix with distinct non-zero elements in the diagonal has
non-trivial p-eigenvectors, although still having a zero element. I.e. consider
with a, b, c > 0 distinct real numbers

D =



a 0 0
0 b 0
0 0 c


 and



±
√
b

±
√
a

0


 ,



±
√
c

0
±
√
a


 ,




0
±
√
c

±
√
b


 .

Then the listed vectors are p-eigenvectors ofD with the associated p-eigenvalues√
ab,

√
ac and

√
bc respectively.

However, the question was raised whether such p-eigenvectors exist, that
do not have a zero element, i.e. do not lie on a coordinate plane, and as our
results in the previous section verify, the answer is positive.

In this section, we investigate the possible ways of constructing p-eigenvectors
based on those results.
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3.1. Numerical investigation

Some numerical experiments were carried out in order to find such p-
eigenvectors. The calculations and visualizations were done in the Octave
numerical computing environment.∗

Figure 1 shows two notable examples in the cases of D = diag(1, 4, 9) (first
row) and D = diag(1, 2, 4) (second row). These images present the standard
deviation of the set of fractions ‖Dv‖p / ‖v‖p with some p values for different

vectors (or directions) v ∈ R3 spanning an eight part of the (Euclidean) unit
sphere, i.e. v having positive elements. The color assigned to a direction is
darker when the standard deviation is larger; except for very small values, when
the color black is applied. On the left-hand-side images, the parameters p = 1, 2
and 0.5 were used. This plot suggests that there exist p-eigenvectors without
zeros elements, maybe even infinitely many, along a curve. But the right-hand-
side image in the first case rather pinpoints only two separate directions with
significantly small values, while in the second case we have infinitely many
solutions indeed, as it will turn out later on. In this case the values for p were
chosen as 0.5, 1, 2 and ∞, and the function values were maximized by 0.1.

Figure 1. Results of numerical investigation about the existence of further
p-eigenvectors in case of 3× 3 diagonal matrices.

In the following, we will construct these p-eigenvectors in two different ways,
and then conclude these observations.

∗The GNU Octave is a free, open-source numerical computation and programming soft-
ware, largely compatible with Mathworks’ well-known Matlab environment. The author L.
Lócsi had the honour to teach Matlab and numerical computing to bachelor students in ap-
plied mathematics together with Prof. Gisbert Stoyan in the spring semester of 2009/2010.
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3.2. Construction by coordinates

Our first approach is based on the construction used to prove Theorem 3.
In order to find a p-eigenvector of nonzero entries, we must choose the index
set {1, 2, 3} of all diagonal entries (as the entries left out would end up being
zeroes), and choose any of its derangements, for now let’s say π = (123), i.e.
we have π(1) = 2, π(2) = 3 and π(3) = 1.

Suppose we want to find the p-eigenvector x = (x1, x2, x3) ∈ R3 with all
positive entries, so the system of equations Dx = γPπx simplifies to

ax1 = γx2;

bx2 = γx3;

cx3 = γx1.

Now we have γ = 3
√
abc, and setting x1 = 1 for this system of rank 2 gives

us the solution

x =
1

γ2



γ2

aγ
ab


 =

1
3
√
a2b2c2




3
√
a2b2c2
3
√
a4bc

3
√
a3b3


 .

Since any vector of this direction is also a solution, we could multiply by
3
√
bc2

to obtain a more symmetric representative

x =




3
√
bc2

3
√
ca2

3
√
ab2


 .

Remark that we could have started off with the other derangement (132)
of the diagonal entries to obtain a directionally distinct solution. But instead,
we will demonstrate a different construction to find the other solution.

3.3. Construction by eigenvectors

Based on Theorem 1, we shall now construct a p-eigenvector using regular
eigenvectors. Again let D = diag(a, b, c) with a, b, c ∈ R+ distinct. Consider

P±D · v = λ · v, (P± ∈ S±
n ),

and find a real valued eigenvector of P±D. Let us use

P± =



0 1 0
0 0 1
1 0 0


 , such that P±D =



0 b 0
0 0 c
a 0 0


 .
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Now ∣∣∣∣∣∣
−λ b 0
0 −λ c
a 0 −λ

∣∣∣∣∣∣
= −λ3 + abc = 0,

having the only real solution λ = 3
√
abc, and the corresponding homogeneous

linear equation—calculation skipped—has the solutions as the scalar multiple
of the particular representative vector

v =




3
√
b2c

3
√
c2a

3
√
a2b




Remark that we could have started with a different permutation matrix
P±, which cycles the three elements in the other direction. This case we would
arrive at the solution found in Section 3.2. In fact, these are the only two viable
choices in order to get p-eigenvectors with all nonzero and positive entries.†

3.4. Conclusions for the 3 × 3 diagonal case

Based on the above calculations, we can make the following statement.

Corollary 3. Let D = diag(a, b, c) with a, b, c ∈ R satisfying the condi-
tion of Theorem 3. There exist exactly 8 directionally distinct non-trivial p-
eigenvectors of D having no zero elements. These may be grouped into 2 groups
of 4 directions. Namely

v1 =




3
√
|bc2|

± 3
√
|ca2|

± 3
√
|ab2|


 and v2 =




3
√
|b2c|

± 3
√
|c2a|

± 3
√
|a2b|


 .

The associated p-eigenvalue is 3
√
abc.

Example 1. (Cf. [3], Example 4.) Consider the below matrix and vectors.

D =



1 0 0
0 4 0
0 0 9


 and



±2
±1
0


 ,



±3
0
±1


 ,




0
±3
±2


 ,



± 3
√
324

± 3
√
9

± 3
√
16


 ,



± 3
√
144

± 3
√
81

± 3
√
4


 .

The listed vectors are p-eigenvectors of D with the associated p-eigenvalues
2, 3, 6 and 3

√
36 ≈ 3.302 (two times) respectively.

†A third, rather initial approach was to search for the p-eigenvector with its elements of
the form axbycz , permuting just the powers x, y, z for the coordinates. This is motivated
by the fact, that in the 2 × 2 case, the p-eigenvectors also were expressed as products of
some powers of the diagonal elements, with expression such as

√
ab = a1/2b1/2 involved [3].

A solution x = 1/3, y = 2/3, z = 3/3 could be even guessed. In general, we would arrive
at a linear system of equations for the powers, which could be solved, and we got the same
results.
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To have a visual impression of these kind of p-eigenvectors, p-eigendirections,
let us recall the definition of the Ip(A) induction set of a matrix A (see [3],
Definition 1). Given a matrix A ∈ Rn×n with 2 ≤ n ∈ N and p ∈ [1,∞] or even
p ∈ (0,∞], the set of points

Ip(A) :=

{
‖Ax‖p
‖x‖p

· x

‖x‖2
∈ Rn : 0 �= x ∈ Rn

}
⊂ Rn

is called the induction set of A with parameter p. If n = 3, then this set is a
surface symmetric with respect to the origin. These sets basically geometrically
describe the effect of the multiplication with A on the norm of the vectors.

Figure 2 shows 6 induction surfaces of the diagonal matrix diag(1, 2, 3) ∈
∈ R3×3. The applied values for p are 0.5, 1, 2, 4, 8 and ∞. One may ob-
serve the transition of the surface as the value of p increases (and imagine the
smooth transition interpolated between the shown objects). Furthermore the
p-eigenvectors, more precisely the intersection points of the p-eigendirections
with these surfaces are also marked with small spheres. Dark gray spheres cor-
respond to the trivial p-eigenvectors (on the axes), mid-gray color is used for
the p-eigenvectors on the coordinate planes, and light gray is used to show the
newly discovered p-eigenvectors with all non-zero coordinates. Observe that
these points show the same constellation on all subfigures, these are common
intersection points of all these surfaces.

Figure 2. Some induction surfaces of the diagonal matrix diag(1, 2, 3) ∈ R3×3

with different p-norms. The intersection points of the surfaces and the p-
eigendirections are marked with small spheres.
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Thus we may formulate the next Corollary.

Corollary 4. In case of the restricted diagonal matrix A ∈ R3×3 of Corollary 3,
the set

S :=
⋂

p∈[1,∞]

Ip(A) ⊂ R3

contains exactly 34 distinct elements (cf. Theorem 3), namely

S =






±a
0
0


 ,




0
±b
0


 ,




0
0
±c


 ,



±b′

±a′

0


 ,



±c′

0
±a′


 ,




0
±c′

±b′


 ,



±u1

±u2

±u3


 ,



±v1
±v2
±v3





 ,

where a′ = rab ·
√
|a|, b′ = rab ·

√
|b|, rab =

√
|ab| /(|a|+ |b|) (and similarly for

the pairs a, c and b, c), and the u and v values in the vectors as presented in
Corollary 3 scaled to have the length of their corresponding p-eigenvalue.

Example 2. As a final note, we present an example of a diagonal matrix not
satisfying the condition of Theorem 3: for D = diag(1, 2, 4), we have that
2 =

√
1 · 4, i.e. we have γI = γJ = 2 for the disjoint index sets I = {1, 3} and

J = {2}, and since both of them have a single derangement, we can construct
the p-eigenvectors

xI =




2
0
±1


 , and xJ =



0
1
0


 .

Since they satisfy DxI = 2 · PxI and DxJ = 2 · PxJ for the permutation
P = (13)(2), so does any linear combination of the two, yielding us infinitely
many nontrivial p-eigenvectors cIxI + cJxJ , (cI , cJ ∈ R). We visualize this
phenomena on Figure 3. The applied values for p are 1, 2 and ∞.

Figure 3. Some induction surfaces of the diagonal matrix diag(1, 2, 4) ∈ R3×3

with different p-norms.
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4. Conclusions and further research

In this paper, we managed to answer most of the questions raised in the
original paper [3]. Nonetheless, some open problems regarding p-eigenvalues
and eigenvectors would still be interesting to investigate. Here we collect a
handful of possible research directions.

• Prove or disprove Conjecture 1. We suspect that the statement is true,
but may be very difficult to prove either constructively or existentially.
An easier problem could be to find a class of matrices for which the
number of p-eigenvalues (with multiplicity) is closer to the theoretical
maximum compared to the class of restricted diagonal matrices of Theo-
rem 3.

• The algorithm for constructing p-eigenpairs based on regular ones be-
comes very inefficient as n increases. We may want to find a method of
lower computational complexity.

• At this point, it seems the idea of p-eigenpairs is interesting for real
vectors only. But still, the question of finding an appropriate complex
analogue/generalization remains an open problem.

The scripts and other software created during the research are available to
download at:

http://numanal.inf.elte.hu/~locsi/indsets/

The reader is encouraged to try these programs. E.g. on the computer
screens it is possible to grab a plotted induction surface and rotate it in 3
dimensions, observing its structure (and the noted special points and curves)
interactively.
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