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Abstract. There are a lot of articles about quantum algorithms, which
involve querying a black box function, often called an oracle. This paper
proposes a way to combine two oracles and to determine how similar they
are using the Deutsch–Jozsa algorithm. In this case being similar means,
that the sets of marked states have just a few ones outside of their intersec-
tion. The new quantum algorithm is compared to its classical counterparts
and a detailed analysis shows when it will outperform them.

1. Introduction

1.1. Deutsch–Jozsa algorithm

With new achivements every month regarding quantum supremacy, it seems
like a commercial quantum computer might come sooner than we expect. De-
spite these advancements and decades of research we have only a few quantum
algorithms which provide speedup over their classical counterparts, because as
it turns out, these are not easy to find and there is no standardized method
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for creating one. The first such algorithm was the Deutsch–Jozsa algorithm
[1], which provided exponential speedup, and it served as an inspiration for
other famous algorithms such as Shor’s algorithm [5] and Grover’s algorithm
[4]. The original problem of Deutsch was to decide if a Boolean function on
one bit is constant or not. A classical algorithm for this has to check the two
possible values of the input but the quantum algorithm solves it by just one
query. For a generalization we call a Boolean function on n bits balanced if it
is zero at half of the time. Assuming the function is constant or balanced the
Deutsch–Jozsa algorithm decides which is the case using again only one query.

1.2. Combining quantum oracles

One frequently used unit of measurement for efficiency is the number of
queries the algorithm has to make to a blackbox function, otherwise known as
an oracle. For our purposes a quantum oracle is a function which operates on
n + 1 qubits, the first n qubits store the input of the function and it either
flips the n+ 1st ancilla qubit or not, this way it can mark specific states. The
marked states define a subset of all the possible 2n states.

Two oracles can be combined to get new oracles in several ways. It has
been shown that an intersection oracle [6] can be created using two extra
helper qubits for the calculation and this simple method will be useful for
us for improving our results later for our own comparison algorithm. The most
interesting combination for us is when we execute two oracles after each other,
because combining two oracles this way we get their symmetric difference.

Lemma 1.1. Executing two oracles after each other on the same qubits marks
only those states that can be found in their symmetric difference set.

Proof. There are three different scenarios for a state:
1. Neither oracle marks it, this way the ancilla qubit remains zero.
2. Only one oracle marks it, this way the ancilla qubit is flipped only once.
3. Both oracles mark it, this way the ancilla qubit is flipped twice, hence it

remains zero.
It can be seen that using this method only those states are marked that are
in one of the oracles and not in both of them, which is the definition of the
symmetric difference set. �

The symmetric difference does not need any additional qubits, and because
it tells the difference between the two functions it is perfect for our case. Since
we can create the symmetric difference and the intersection set of two functions,
it is straightforward that if these combined oracles are executed after each
other, then the result will be a union oracle, because the symmetric difference
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of two sets with no intersection (in this case the symmetric difference and the
intersection set of the two original oracles) is the same as their union. All the
different combinations of oracles can be used for anything as any other normal
oracle could be, for example to combine them even more or to use them in any
oracle based algorithms such as the Grover search.

1.3. Analysing random Boolean functions

The Deutsch–Jozsa algorithm can determine if a function is constant or
balanced, but this method only works with 100% probability, when these are
the only two options. It has been analysed how effective this algorithm can be
at deciding if a random Boolean function is constant or not by querying the
oracle k times [3]. If the function is constant, then the algorithm will give the
right answer, but it can easily classify close to constant functions as constant.
At the worst case scenario, when only one input gives a different bit from all
the others, the probability of measuring the state and getting constant as an
answer tends to 1, which makes the Deutsch–Jozsa algorithm not fit for this
problem.

2. Comparing oracles

In this section we propose a way to compare two different oracles. To be
more precise, we are going to compare the subsets they are defining. First
of all we are going to combine the oracles by querying them after each other
(the order is not important). This way we are going to get their symmetric
difference oracle. If we apply the Deutsch–Jozsa algorithm to this combined
oracle, then we can determine if their symmetric difference is close to the empty
set or not.

In case the oracles define the same subset, the combined function will be a
constant zero, however it is important to note, that even if they do not have
an intersection, that does not necessarily mean that it will be a constant 1. In
order to get constant 1 the subsets must not have an intersection and their union
must be equal to the set of all elements. It is obvious that with some knowledge
about the functions beforehand we can create more accurate comparisons. For
example if we know that each of the two functions can only cover a quarter
of the whole problem space, and in case there is no intersection, then the
measurement will determine that the function is balanced with a probability
of 1. When we do not know anything about the functions, then we can just
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add an additional qubit, essentially doubling the problem space, so even in the
worst case scenario, the symmetric difference of the functions can only cover at
most half of the problem space. This way our measurements will be on a scale
between constant zero and balanced. The almost constant functions are often
classified as constant as mentioned earlier, which is good for us, because this
means the functions are similar.

2.1. Differences between applying one and two oracles

The Deutsch–Jozsa and our comparison algorithm can be described by
showing how the states of the qubits change over time:

We start with the n+1 qubit state, where the first n qubits are 0s and the
last one is 1.

|0〉⊗n |1〉

Then we apply a Hadamard transform to each qubit to get the state:

1√
2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

After applying the quantum oracle we obtain the state:

1√
2n+1

2n−1∑
x=0

|x〉 (|f(x)〉 − |1⊕ f(x)〉)

Since f(x) can only be 0 or 1, we can see that this state can be expressed as
follows:

1√
2n+1

2n−1∑
x=0

(−1)f(x) |x〉 (|0〉 − |1〉)

Finally we apply a Hadamard transform a second time for the first n qubits
(the last one can be ignored):

1

2n

2n−1∑
x=0

(−1)f(x)

[
2n−1∑
y=0

(−1)〈x,y〉 |y〉

]
=

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)(−1)〈x,y〉) |y〉

]

When we measure the state we obtain |0〉⊗n
with probability:

∣∣∣∣∣
1

2n

2n−1∑
x=0

(−1)f(x)

∣∣∣∣∣

2
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Our comparison algorithm is almost the same, but after applying the first
oracle, we apply a second one too:

1√
2n+1

2n−1∑
x=0

(−1)f1(x) |x〉 (|0〉 − |1〉)

1√
2n+1

2n−1∑
x=0

(−1)f1(x) |x〉 (|f2(x)〉 − |1⊕ f2(x)〉)

1√
2n+1

2n−1∑
x=0

(−1)f1(x)(−1)f2(x) |x〉 (|0〉 − |1〉)

1√
2n+1

2n−1∑
x=0

(−1)f1(x)⊕f2(x) |x〉 (|0〉 − |1〉)

After applying the Hadamard gates a second time, the state can be measured.
The probability of obtaining |0〉⊗n |1〉:

∣∣∣∣∣
1

2n

2n−1∑
x=0

(−1)f1(x)⊕f2(x)

∣∣∣∣∣

2

To show the connection to the symmetric difference, this is the same as writing:

∣∣∣∣1−
|x : f1(x) �= f2(x)|

2n−1

∣∣∣∣
2

2.2. Analysis of the repeated execution of the comparison algorithm

Here we present the analysis which answers these questions:

• How many times should we execute the process, to get accurate results?

• How does this algorithm compare to its classical counterparts?

• When should we use it?

From an analytic point of view it does not matter that we are talking about
two functions combined. We can think of this combined function as a simple
Boolean function. The similarity can be interpreted as a threshold for how
many times this function gives 1 as a result. For our analysis the following
notations will be used:
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• n is the number of input bits for the function f ,

• f ∈ {0, 1}n × {0, 1} for the classical cases and f ∈ {0, 1}n+1 × {0, 1}n+1

for the quantum case,

• m = |x : f(x) = 1| for the classical cases and m = |x : f(x) �= |0〉| for the
quantum case,

• s is the threshold for similarity, if m ≤ s then f is accepted (In other
words the two functions that were combined to create f are similar),

• k is the amount of times the querying process is executed.

Here we define the quantum, and two classical algorithms for accepting a
function:

Definition 2.1. The quantum algorithm: Execute the Deutsch–Jozsa algo-
rithm with the function f k times. Let w be the number of times, the result
was not the state |0〉. If w

k ≤ s
2n then the function is accepted. ”Q1” from now

on.

Definition 2.2. The classical algorithm: Execute the function k times for
random inputs from f ’s domain (the same input can be chosen multiple times).
Let w be the number of times, the result was 1. If w

k ≤ s
2n then the function is

accepted. ”C1” from now on.

Definition 2.3. The improved classical algorithm: Execute the function for
all elements in a k sized subset of f ’s domain (the same input can not be chosen
multiple times). Let w be the number of times, the result was 1. If w

k ≤ s
2n

then the function is accepted. ”C2” from now on.

Next we calculate the probability of accepting a function for all three al-
gorithms. ”C1” is a classic example of ”sampling with replacement” which
follows the binomial distribution. Let w be the number of times, the result
was 1. The probability of getting 1 as the output is m

2n . Using the formula, the
probability of w = a:

PC1(w = a) =

(
k

a

)(m

2n

)a (
1− m

2n

)k−a

.

To get the probability where w ≤ a we have to sum all probabilities, where
w = i and i ∈ [0..a]:

PC1(w ≤ a) =

a∑
i=0

PC1(w = i) =

a∑
i=0

(
k

i

)(m

2n

)i (
1− m

2n

)k−i

.

The condition for acceptance is w
k ≤ s

2n , so the probability we are looking for

is P (w ≤ � ks
2n �).
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”Q1” is similar to ”C1”, the only difference is the probability of not getting
|0〉 as the outcome. From the analysis of [3], the probability of getting the state
|0〉 after executing the Deutsch–Jozsa algorithm with a function that gives 1
m times:

P (|0〉) =
(
1− m

2n−1

)2

P (¬ |0〉) = 1−
(
1− m

2n−1

)2

Inserting these probabilities into the formula:

PQ1(w ≤ a) =

a∑
i=0

PQ1(w = i) =

=

a∑
i=0

(
k

i

)(
1−

(
1− m

2n−1

)2
)i ((

1− m

2n−1

)2
)k−i

”C2” is different from the other two, because it is analogous to the problem
of ”sampling without replacement” which follows a hypergeometric distribu-
tion. Let w be the number of times, the result was 1. Using the formula, the
probability of w = a:

PC2(w = a) =

(
m
a

)(
2n−m
k−a

)
(
2n

k

) .

Similarly to ”C1”, to get the probability where w ≤ a we have to sum all
probabilities, where w = i and i ∈ [0..a]:

PC2(w ≤ a) =

a∑
i=0

PC2(w = i) =

a∑
i=0

(
m
i

)(
2n−m
k−i

)
(
2n

k

) .

Not getting the state |0〉 is analogous to getting 1 as the output in the
classical versions, but the probabilities differ. Let p equal the probability in
the classical algorithms (p = m

2n ). The quantum version has the probability

1−
(
1− m

2n−1

)2
which can be expressed with p: 4p(1−p). Figure 1 shows these

probabilities for all possible m values. Since we will only use functions, where
m ≤ 2n−1 only the left side of the graph is relevant for us. The reason for this
is that the problem space will always be doubled, in order to force all results
to fall between constant 0 and balanced. The graph shows that the quantum
version has a higher probability for getting non zero outputs and this means
that the probability of acceptance when using ”Q1” will tend to be smaller
than when using ”C1”. The reason behind this is that they use the same
binomial distribution formula. The effect of this probability difference can be
seen in Figure 2. It clearly shows, that ”Q1” can not be used to determine if
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Figure 1: Different probabilities for obtaining a non zero output for all possible
m values on the x axis (n = 10)

(a) m = 5 (b) m = 12

(c) m = 50 (d) m = 100

Figure 2: For ”C1”, ”C2” and ”Q1” the probability of accepting a function
with all possible values for k on the x axis. (n = 10 and s = 50)
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a function should be accepted or not. If it should be accepted, then the other
classical algorithms are converging to 1 a lot faster and in some cases ”Q1”
converges to a value less then 1 (that can even be 0) as k gets bigger. Although
when the function should be rejected, it converges faster to 0 then the others,
but without a solution to the other half of the problem ”Q1” is not suitable
for us.

To achieve similar or better performance than the classical algorithms, we
have to modify our quantum algorithm. Since n, m and s are given, the
probability of getting non 0 output can not be adjusted. The only parameter
that can be changed to benefit us is s. If we increase s, then the probability
P (w ≤ � ks

2n �) will increase too. To get the quantum algorithm to behave the
same way as ”C1”, we have to examine the special case, when m = s. In this
case the limes of PQ1(w <= s) should be equal to 1

2 when k tends to +∞. Let
y be the coefficient when increasing s. If we want to know exactly the relation
between y and all the other parameters, then we have to solve a complicated
equation:

lim
k→+∞

� ksy
2n �∑
i=0

(
k

i

)(
1−

(
1− m

2n−1

)2
)i ((

1− m

2n−1

)2
)k−i

=
1

2

Instead of calculating this, we looked for an alternative solution. For given n
and m = s we set different y values manually until limk→2n PQ1(w ≤ �ksy

2n �)
increased to 1

2 . The y values we get with this method have an interesting
property. If a y value that works with given n′ and s′ = m′, then the same
y value will work for any n and s = m where n

s = n′

s′ . This means that y
should depend only on the value of n

s . We choose n to be 10, then we manually
calculated y for different s = m values. After we have the y values, we can plot
the (s, y) pairs. Connecting these points resulted in a linear line. A line could
be fitted to the points that gave this equation:

y = − s

2n−2
+ 4

If this y coefficient is used in ”Q1”, then the results will match ”C1” when
s = m. The results can be connected to P (¬ |00..0〉) that can be seen in
Figure 1. If we plot sy

2n for all possible s values, then we get the same curve.

Definition 2.4. The improved quantum algorithm: Execute the Deutsch–
Jozsa algorithm with the function f k times. Let w be the number of times,
the result was not the state |0〉. If w

k ≤ sy
2n , where y = − s

2n−2 + 4, then the
function is accepted. ”Q2” from now on.
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The new results for ”Q2” can be seen in Figure 3. The improved quantum
algorithm behaves the same way as ”C1”, but it converges faster to the right
answer. This faster convergence can be expressed with the amount of time it
takes to have the probability to be higher or lower than a t threshold. Figure 4
and Figure 5 show the different k values, where the probability becomes higher
than 99

100 . Each of these k values are the smallest such value (k ∈ [1..2n]) that
the average probability of accepting after k and k − 1 steps is higher than
99
100 . The average is used, because as seen in Figure 3, the probability is not a
smooth line. The results show that when m is close to s ”C2” performs better,
but when m (approximately) ≤ 0, 95s− 6 then ”Q2” takes the lead. The three
algorithms tend to produce k values close to each other when m gets smaller.

(a) m = 5 (b) m = 12

(c) m = 50 (d) m = 100

Figure 3: For ”C1”, ”C2” and ”Q2” the probability of accepting a function
with all possible values for k on the x axis. (n = 10 and s = 50)
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(a) s = 2 (b) s = 4

(c) s = 8 (d) s = 16

Figure 4: For ”C1”, ”C2” and ”Q2” the different k values for all possible m
values (on the x axis) when s is fixed, where k represents the smallest k ∈ [1..2n],
for which the average probability of accepting a function after k and k−1 query
to the algorithms is higher than 99

100 . (n = 10, s ∈ {2, 4, 8, 16}, m ∈ [0..s])
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(a) s = 32 (b) s = 64

(c) s = 128 (d) s = 256

Figure 5: For ”C1”, ”C2” and ”Q2” the different k values for all possible m
values (on the x axis) when s is fixed, where k represents the smallest k ∈ [1..2n],
for which the average probability of accepting a function after k and k−1 query
to the algorithms is higher than 99

100 . (n = 10, s ∈ {32, 64, 128, 256}, m ∈ [0..s])

A similar result can be observed in Figure 6 and Figure 7, when the function
should not be accepted. Here each of the k values are the smallest such value
(k ∈ [1..2n]) that the average probability of not accepting after k and k − 1
steps is lower than 1

100 . When m is close to s, then ”C2” performs better, but
when m (approximately) ≥ 1, 05s + 6 then ”Q2” becomes the fastest one to
converge to 0. The graphs in Figures 4, 5, 6 and 7 can be used to estimate,
how many k iterations are needed in order to achieve the correct answer with
at least 99% accuracy. Keep in mind, that when m is close to s, then ”Q2”
will never reach this level of accuracy.

An algorithm is considered to be better at a given m value then the other, if
it converges faster to the correct answer. Assuming a uniform distribution of m
values, then ”Q2” is better than the others at accepting, when s

2 ≤ 0, 95s− 6.
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Rearranging this inequality gives 13, 333 < 14 ≤ s. Assuming the same for not
accepting, ”Q2” is better, when 2n−s

2 ≥ 1, 05s + 6. This can be simplified to

s ≤ 2n−12
3,1 . In summary, ”Q2” should be used, when 14 ≤ s ≤ 2n−12

3,1 and it
will be the most efficient, if the m values are clustered at two points, one less
than and other greater than s, and these clusters are as far from s as possible.

(a) s = 2 (b) s = 4

(c) s = 8 (d) s = 16

Figure 6: For ”C1”, ”C2” and ”Q2” the different k values for all possible
m values (on the x axis) when s is fixed, where k represents the smallest
k ∈ [1..2n], for which the average probability of not accepting a function after
k and k−1 query to the algorithms is lower than 1

100 . (n = 10, s ∈ {2, 4, 8, 16},
m ∈ [(s+ 1)..2n−1])
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(a) s = 32 (b) s = 64

(c) s = 128 (d) s = 256

Figure 7: For ”C1”, ”C2” and ”Q2” the different k values for all possible m
values (on the x axis) when s is fixed, where k represents the smallest k ∈ [1..2n],
for which the average probability of not accepting a function after k and k− 1
query to the algorithms is lower than 1

100 . (n = 10, s ∈ {32, 64, 128, 256},
m ∈ [(s+ 1)..2n−1])

3. Experiments

Now that we are familiar with the theoretical background, we should see
it in practice. As of today, there are not a lot of quantum computers for the
average user, but there are quantum simulators, and quantum cloud computing
services that can be used for testing. Our algorithm was implemented using
quantum gates on the IBMQ Quantum Experience quantum computing ser-
vice. The experiments mostly use 2 and 3 qubit oracles, because circuits with
small number of qubits are easy to understand and create. An ancilla qubit,
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sometimes extra qubits are also needed for computing either an oracle or the
combination of two oracles. The previously mentioned additional qubit can be
implemented too to double the the number of possible inputs and to normalize
the results. All of the examples were executed 1000 times, in order to show
that they will give correct results.

The oracles were created using Toffoli gates [2]. A Toffoli gate will mark 1
or more states and it connects to 3 qubits. The 2 qubits where the gate has
dots determine if the third one’s value should be negated or not. By default the
gate activates if both input qubits are 0, but this can be altered if a NOT gate
is placed before and after on one or both input qubits. There are four different
states that can be marked this way and if there are more than 3 qubits, then
the gate will mark more states. In summary, it marks all the states that will
negate the ancilla qubit and if a qubit is not an input to this gate, then its
value does not matter and it will double the number of marked states.

The circuit in Figure 8 shows the generalised algorithm for three qubits,
where F and G are the two functions.

|0〉 H

F G

H

|0〉 H H

|0〉 H H

|0〉 X H

Figure 8: The proposed general algorithm

3.1. Two different oracles with intersection

Our first real example (Figure 9) uses four qubits. One of them is the ancilla
bit, therefore the number of possible states is 23 = 8. The first two Toffoli gates
(and the NOT gates before and after) correspond to the first oracle F , and the
second two to the second oracle G. It can be noticed that the first part of F is
the same as the first part of G, this will give their intersection, the states 000
and 001. Both F and G oracles mark two additional states, 100, 110 for F and
101, 111 for G.

Both F andGmarked four states initially, which would make it possible that
their combination will mark more than half of the states (in case they have no
intersection), but we know that this will not happen here. There are maximum
eight possible states and that is twice the number of the marked states, therefore
the combination of F and G (their symmetric difference function) is balanced,
and every time the outcome is measured it gives the same state: 001.
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|0〉 H • X • X • X • X H

|0〉 H • • H

|0〉 H • X • X H

|0〉 X H

Figure 9: Two oracles combined that gives a balanced result

Both F and G marked four states initially, which would make it possible
that their combination will mark more than half of the states (in case they have
no intersection), but we know that this will not happen here. There are maxi-
mum eight possible states and that is twice the number of the marked states,
therefore the combination of F and G (their symmetric difference function) is
balanced, and every time the outcome is measured it gives the same state: 001.

3.2. Two different oracles with no intersection

The next example (Figure 10) has two oracles (F referring to the first
two Toffoli gates and G to the last two) that have no intersection and their
union will mark all possible states. If we execute this circuit and measure the
outcome, the result will always be 00, which means the function is constant.
The problem is, that it is a ”constant 1” type of function, which means the
symmetric difference is huge, but ”constant 0” type functions will produce the
same outcome, and in that case the symmetric difference is small.

|0〉 H • X • X • X • X H

|0〉 H • • X • X X • X H

|0〉 X H

Figure 10: Oracles marking all the possible states

To counter this problem, we can introduce one more qubit which will double
the number of possible states and therefore, even when the demonstrated worst
case scenario happens, the result will be that it is a balanced function. This
additional qubit will always be marked to be 0, this way the the number of
marked states will not increase. More qubits need to be added to achieve this.

Figure 9: Two oracles combined that gives a balanced result

3.2. Two different oracles with no intersection

The next example (Figure 10) has two oracles (F referring to the first
two Toffoli gates and G to the last two) that have no intersection and their
union will mark all possible states. If we execute this circuit and measure the
outcome, the result will always be 00, which means the function is constant.
The problem is, that it is a ”constant 1” type of function, which means the
symmetric difference is huge, but ”constant 0” type functions will produce the
same outcome, and in that case the symmetric difference is small.

|0〉 H • X • X • X • X H

|0〉 H • • X • X X • X H

|0〉 X H

Figure 10: Oracles marking all the possible states

To counter this problem, we can introduce one more qubit which will double
the number of possible states and therefore, even when the demonstrated worst
case scenario happens, the result will be that it is a balanced function. This
additional qubit will always be marked to be 0, this way the number of marked
states will not increase. More qubits need to be added to achieve this. F
and G oracles will be intersected with a newly created one. The new oracle
consists only of a single CNOT gate that connects the additional qubit to one
of the helper qubits. F and G will connect to the other helper qubit. Finally
an intersection oracle is created with a Toffoli gate connecting the two helper
qubits to the original ancilla qubit. The new oracle, F and G are executed again
to negate their effects on the helper qubits. (The helper qubits are needed to
perform the intersection.) Figure 11 illustrates the above described circuit.
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|0〉 H • • H

|0〉 H • X • X • X • X • X • X • X • X H

|0〉 H • • X • X X • X • • X • X X • X H

|0〉 X H

|0〉 •

|0〉 •

Figure 11: Example of doubling the number of possible states

The new circuit will always have the outcome state of 001, which means
that it is a balanced function, which is exactly what we wanted. The schematic
circuit in Figure 12 shows the general concept.

|0〉 H •

F G

•

F G

H

|0〉 H H

|0〉 H H

|0〉 X H

|0〉 •

|0〉 •

Figure 12: Generalized version of the example in Figure 11

3.3. Two identical oracles

There is one special case that was not discussed yet. What happens when
the oracles are the same? In quantum computing every operation must be
reversible and both the CNOT and Toffoli gates are inverses of themselves,
therefore by applying these operations twice, the output should be the same as
the input was. Our oracles consists of these two gates, and by following this
logic, executing the same oracle two times is the same as the identity operation,
which means no states will be marked and the output of our algorithm would
always be |0〉, in other words: a constant zero function. Unfortunately we can
only execute the algorithm a fixed number of times and our result will be right
with a certain probability, therefore this method is not good for checking if the
functions are equivalent, but it is sufficient to measure how similar they are.
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3.4. Two general oracles

Figure 13 shows an average scenario, where the symmetric difference func-
tion is neither constant nor balanced. The combined oracle only marks two
states out of all possible 2n = 8. 2 out of 8 is right in the middle of the
constant-balanced scale and the corresponding results are the 001 010 011 000
states, all with a probability of 25%.

|0〉 H • • • H

|0〉 H X • X H

|0〉 H • • H

|0〉 X H

Figure 13: Average case example

4. Conclusion

We had shown that the Deutch-Jozsa algorithm can be used for comparing
oracles, by executing it on the combined oracle. The results after the repeated
execution of this method can be used to determine if the number of states in
the symmetric difference set is below or not a predefined similarity threshold.
Although the results are not correct 100% of the time, but the probability of
getting the wrong answer can be minimized to a desired amount by executing
the algorithm enough times. We found a way to ensure that no additional
knowledge is required of the functions in order to apply the algorithm to them,
by doubling the number of possible states. The proposed quantum algorithm
was compared to its classical counterparts and although not always, but it of-
ten gave better results. The only times it performed worse was when the size
of the symmetric difference was close to the similarity threshold. This method
of comparison can have useful applications in the future, when quantum com-
puters are more common, because comparison is a frequent task in everyday
life and it is easy to find bijection between Boolean functions and comparable
objects, for example pictures or long DNA sequences. This algorithm is espe-
cially good at classifying two clusters, where one is below the threshold and
the other is above it. It can not be used when small differences are important,
because it will never give a precise answer, but it can be used as a deciding
factor in order to determine if the precise equality checking is even necessary.
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