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Abstract. Let L∗ be the ‖.‖1-closure of l∞, where

‖f‖1 := lim sup
N→∞

N−1
∑
n≤N

|f(n)|.

The linear functional Λ of the vector space {s ∈ l∞ : s(n) = const}, defined
by Λ(s) := lim

N→∞
N−1 ∑

n≤N

s(n), can be extended to a linear functional Λ∗

on L∗. We show that, for f ∈ L∗,Λ∗(f) can be written as an integral, and
apply this to a problem formulated by Halmos in [5].

1. Introduction

Let (X,F, µ) be a measure space together with a measure-preserving trans-
formation T , i.e. T : X → X and

∫

X

f(Tnx)dµ =

∫

X

f(x)dµ

for all n = 0, 1, 2, ... and all f ∈ L1 := L1(X,F, µ).
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Then P. Halmos [5] formulates Birkhoff’s ergodic theorem as follows.

Individual Ergodic Theorem. ([5], p. 18) If T is a measure preserving

transformation and if f ∈ L1, then
1
n

n−1∑
j=0

f(T jx) converges almost everywhere.

The limit function f∗ is integrable and invariant (i.e. f∗(Tx) = f∗(x) almost
everywhere). If µ(X) < ∞, then

∫
X

f∗(x)dµ =
∫
X

f(x)dµ.

In his ”Comments on the Ergodic Theorem” (see [5], pp. 22–24) Halmos
writes

I cannot resist the temptation of concluding these comments with
an alternative ”proof” of the ergodic theorem. If f is a complex-
valued function on the non-negative integers, write

∫
f(n)dn =

= lim 1
n

n−1∑
j=0

f(j) whenever the limit exists, and call such functions

integrable. If T is a measure-preserving transformation on a space
X and f is an integrable function on X, then

∫∫
|f(TnX)|dndx =

∫∫
|f(Tnx)|dxdn =

∫∫
|f(x)|dxdn =

=

∫
|f(x)|dx < ∞.

Hence, by ”Fubini’s theorem” (!), f(Tnx) is an integrable function
of its two arguments and therefore, for almost every fixed x, it is
an integrable function of n. Can any of this nonsense be made
meaningful?

We assume µ(X) < ∞ and define, for f ∈ L1, the arithmetic function fx by

fx(n) = f(Tn−1x).

Then we show, that fx lies in the space L∗ of uniformly summable functions
for almost all x ∈ X.

Next, the linear functional Λ on the vector space
{s ∈ l∞ : s(n) = const. for all n ∈ N},

defined by

Λ(s) = lim
N→∞

N−1
∑
n≤N

s(n)

can be extended to a linear functional Λ∗ on L∗. We show, that, for all f ∈
∈ L∗, Λ∗(f) can be written as an integral and solve the problem formulated by
Halmos.
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2. Uniformly summable functions

Let l∞ be the linear space of all bounded functions on the positive integers
with norm ‖f‖ = sup

n∈N
|f(n)|. For 1 ≤ α < ∞ let

Lα := {f : N → C; ‖f‖α < ∞}

denote the linear space of arithmetic functions with bounded seminorm

‖f‖α :=


lim sup

x→∞
x−1

∑
n≤x

|f(n)|α



1
α

.

In the frame of investigations of the mean behaviour of multiplicative func-
tions (see, for example, K.-H Indlekofer [6]) I introduced in 1980 the following

Definition 2.1. A function f ∈ L1 is said to be uniformly summable if

(2.1) lim
K→∞

sup
N≥1

N−1
∑
n≤N

|f(n)|≥K

|f(n)| = 0,

and the space of all uniformly summable functions is denoted by L∗. It is
obvious that, if α > 1,

Lα � L∗ � L1.

Remark 2.1 The main underlying motivation for introducing this concept can
be described as follows.

Let f be real-valued. For each number N ≥ 1 we define the frequency
function

FN,f (y) := N−1
∑
n≤N

f(n)≤y

1.

If, as N → ∞, the frequencies converge to a limiting distribution Ff in the
usual probabilistic sense we say that f has a limiting distribution Ff and write

FN,f
D−→ Ff . Here we call the distribution function Ff degenerate if Ff (y) = 0

for y < 0 and Ff (y) = 1 for y ≥ 0, and nondegenerate otherwise.

Now, look at the existence of the limiting distribution Ff of f and the
existence of the mean-value

(2.2) M(f) := lim
N→∞

1

N

∑
n≤N

f(n)

of f .
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Because of

1

N

∑
n≤N

f(n) =

∞∫

−∞

ydFN,f (y)

one could expect that M(f) exists if the limit law Ff of f exists. Unfortunately,
this is not so! For example, define the multiplicative function f such that, for
every prime p,

f(pk) =

{
1, k = 1;

pk, k ≥ 2.

Then (see, for example, Indlekofer [8], pp.117-119) f has a non-degenerate
limiting distribution, but

∑
n≤N

f(n) >
∑

n2≤N

n2 � N
3
2 .

Thefore, M(f) does not exist.

Now, let f be (real-valued and) uniformly summable. Then, if ±K are
contininuity points of Ff one easily obtains

1

N

∑
n≤N

|f(n)|≤K

f(n) →
(N→∞)

K∫

−K

ydFf (y)

and

1

N

∑
n≤N

|f(n)|≤K

|f(n)| →
(N→∞)

K∫

−K

|y|dFf (y)

so that (2.1) implies

(
limN→∞ − limN→∞

) 1

N

∑
v≤N

f(n) < 2ε

and M(f) exists. Similarly for |f |.
This ends Remark 2.1.

The idea of uniform summability turned out to provide the appropriate
tools for describing the mean behaviour of multiplicative functions and gave
insight into exactly which additive functions belong to L1. (See [6] – [10] for
generalizations of results of Delange [2], Wirsing [18], Halász [4], Elliott [3],
Daboussi [1].)

A typical example of such a generalization is given in the following. In
1943 Wintner [17], in his book on Erathostenian Averages, asserted that if a
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multiplicative function g assumes only values ±1, then the mean-value M(g)
always existed. But the sketch of his proof could not be substantiated, and the
problem remained open as the Erdős–Wintner conjecture. In 1967 Wirsing [18]
solved this problem, and in [6] we could show

Proposition 2.1. Let g ∈ L∗ be a real-valued multiplicative function. Then
the existence of M(|g|) implies the existence of M(g).

In Wintner’s case |g| = 1 and M(|g|) = lim
N→∞

N−1
∑

n≤N

1 = 1.

In this paper we note that L∗ is the ‖.‖1-closure of l∞. The mean-value
M(.) defines a linear functional on the (vector-) space {f ∈ l∞,M(f) exists}
and can be extended to a linear functional Λ∗ on L∗ that satisfies

|Λ∗f | ≤ ‖f‖1 for f ∈ L∗

(see Rudin [15], p. 57). If τ is the translation operator defined on l∞ by the
equation

(τf)(n) = f(n+ 1) (n ∈ N)

then
Λ∗(τf) = Λ∗(f).

As an example we consider a measure space (X,F, µ) together with a mea-
sure preserving transformation T .

For f ∈ L1 define fx by (T 0x = x)

(2.3) fx(n) := f(Tn−1x) (n ∈ N).

Defining
∫
X

fxdµ by

(2.4) n �−→
∫

X

fx(n)dµ =

∫

X

f(Tn−1x)dµ

for n ∈ N the problem we consider is whether

(2.5) Λ∗(

∫

X

fxdµ) =

∫

X

Λ∗(fx)dµ for almost all x ∈ X

holds for f ∈ L1.

For the use of Fubini’s Theorem we observe that, because of the definition
of the integral, the general result follows easily from the special case of simple
functions.
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Now, for a given measurable A ∈ F, let f := 1A be the indicator function
of A. Then

f∗
x := Λ∗(fx) = M(fx)

exists for almost all x and, by (2.4),
∫

X

fx(n)dµ =

∫

X

fdµ = µ(A)

and

Λ∗



∫

X

fxdµ


 =

∫

X

fdµ = µ(A).

If µ(X) < ∞ then
∫

X

Λ∗(fx)dµ =

∫

X

f∗
xdµ =

∫

X

fdµ = µ(A)

by the Individual Ergodic Theorem, and (2.5) holds for simple functions from L1.

On the other hand, suppose X is the real line (i.e. µ(X) = ∞), T is the
translation Tx = x + 1, f is the indicator function of [a, b), where −∞ < a <
< b < ∞. Then obviously Λ∗fx = 0 for all x ∈ R and

∫

X

f∗
xdµ = 0 �=

∫

X

fdµ = b− a.

Therefore we shall assume in this paper that µ(X) < ∞.

3. Integration theory on N

Suppose that A is an algebra of subsets of N. Then, if E denotes the family
of simple functions on N, the set

E(A) = {s ∈ E : s =
m∑
j=1

αj1Aj ;αj ∈ C, Aj ∈ A, j = 1, ...,m}

of simple functions on A is a vector space.

Now, N, endowed with the discrete topology, will be embedded in a compact
space βN, the Stone-Čech compactification of N, and then any algebra A in N
with an arbitrary finitely additive set function (a content or pseudo measure
on N) can be extended to an algebra Ā in βN together with an extension of
the pseudomeasure, which turns out to be a premeasure on Ā.
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Proposition 3.1. Let A be an algebra in N and δ : A → [0,∞). Then the
following assertions hold.

(i) The family

Ā := {Ā : A ∈ A}

is an algebra in βN, where Ā = clβNA is the closure of A in βN.

(ii) The map

δ̄ : Ā → [0,∞)

δ̄(Ā) = δ(A)

is σ-additive on Ā and can uniquely be extended to a measure on the
minimal σ-algebra σ(Ā) over Ā.

This was the starting point for an ”Integrations theory on N”. For details see
Indlekofer [11], [12], [13].

In [14] K.-H. Indlekofer and R. Wagner considered algebras F of real-valued
functions from l∞ such that

(i) F separates the points,

(ii) F contains the constants,

(iii) F is complete in the sup-norm,

and proved

Proposition 3.2. (See [14], Theorem 1.) Let F be an algebra of real-valued
bounded functions on N satisfying (i), (ii) and (iii). Let Λ be a positive linear
functional on F with Λ(1N)=1. Then there exist an algebra A of subsets on N
and a content δ on A such that

(i) each f ∈ F belongs to the ‖.‖u-closure of E(A) and

(ii) for each f ∈ F the relation

Λ(f) =

∫

βN

f̄ds̄

holds.
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Let us apply Proposition 2.2 to Λ∗ where F = {s ∈ l∞ : s real − valued}.
Observe that s = u + iv ∈ l∞, where u and v are real-valued, holds if and

only if u, v ∈ l∞. Then there exists an algebra A∗ and a content δ such that

(3.1) Λ∗(s) =

∫

βN

s̄dδ̄ for all s ∈ l∞.

If f ∈ L∗ there exists a sequence {sn}, sn ∈ l∞ such that

lim
n→∞

‖f − sn‖1 = 0 and lim
m,n→∞

∫

βN

|sm − sn|ds̄ = 0.

Therefore we have

Theorem 3.1. Let f ∈ L∗. Then there exist an algebra A∗ and a content
δ such that (3.1) holds. Furthermore, there exist sn ∈ l∞ such that

Λ∗(f) = lim
n→∞

Λ∗(sn) =

∫

βN

f̄dδ̄

where f̄ : βN → C is unique modulo δ̄-null functions.

4. On the problem of Halmos

Let (X,F, µ) be a measure space with µ(X) < ∞ and f ∈ L1 = L1(µ). For
a given measure preserving mapping T : X → X and x ∈ X define fx : N → C
by (2.3).

Then
f∗
x := ‖fx‖1 = M(fx) for almost all x ∈ X

is integrable and invariant under T. Choose a sequence {sm} of simple functions
on X such that ∫

X

|f − sm|dµ → 0 as m → ∞.

Then, for almost all x ∈ X,

(4.1) ‖fx − sm,x‖1 =: |fx − sm,x|∗

and ∫

X

|fx − sm,x|∗dµ ≤
∫

X

|f − sm|dµ → 0 as m → ∞.
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There exists a subsequence mk such that

|fx − smk,x|∗ → 0 as k → ∞

for almost x ∈ X, i.e.

‖fx − smk,x‖1 → 0 as k → ∞.

Thus fx ∈ L∗ for almost all x ∈ X.

Integrating fx over N (or βN) and X and using Fubini’s Theorem we obtain
by (2.4)

∫

X

f∗
xdµ =

∫

X

Λ∗(fx)dµ =

∫

X

∫

βN

f̄xdδ̄dµ =

∫

βN

∫

X

f̄xdµdδ̄ =

= Λ∗



∫

X

fxdµ


 =

=

∫

X

fdµ.
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