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Abstract. In the broad area of extreme value theory (EVT), my main
scientific connection with János Galambos is in the field of rates of con-
vergence in EVT. During my stay in Sheffield, UK (1975–1978), my PH.D.
supervisor, Clive Anderson, sequentially provided me with different topics
of research, among which rates of convergence and penultimate approxima-
tions. And indeed I still think that there is some kind of magic in this
topic, because this my first passion has been intermittently revisited until
1999, in the framework of EVT. More recently, and after 2012, I was able
to find a possible strong link between this topic in the field of EVT and
another field I am interested in, statistical process control and reliability.
Indeed, in reliability theory any coherent system can be represented as a
series-parallel or a parallel-series (PS) system. Its lifetime can thus be
written as the minimum of maxima or the maximum of minima. For large-
scale coherent systems it is sensible to assume that the number of system
components goes to infinity and work with the possible non-degenerate EV
distributions either for maxima or for minima to get adequate lower and
upper bounds for the system reliability. But rates of convergence to these
limiting laws are often slow and penultimate approximations can provide
a faster rate of convergence. The identification of the possible limit laws
for the system reliability of homogeneous PS systems is sketched and the
gain in accuracy is assessed whenever penultimate approximations are used
instead of the ultimate limiting one.
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1. Introduction and motivation

The first time I met János Galambos and his wife, Éva, was in 1983, at
Vimeiro’s meeting, a NATO Advanced Study Institute (ASI) on Statistics of
Extremes and Application (SEA), which took place at Vimeiro in the summer
of 1983, from 31st of August until September 14, and where János spoke about
rates of convergence in extreme value theory (Galambos, 1984). János was
then one of the invited speakers, among other prominent researchers in the
field of extreme value theory (EVT), among whom I mention, Clive Anderson,
Paul Deheuvels, Benjamin Epstein, Laurens de Haan, Ross Leadbetter, Georg
Lindgren, Yashaswini Mittal, James Pickands III, Sid Resnick, Holger Rootzen,
Masaaki Sibuya, J. Tiago de Oliveira, Jef Teugels and Ishay Weissman.

Repeating what I already mentioned several times (see for instance Fraga
Alves and de Carvalho, 2015), it was indeed true that when Richard Davis,
one of the young participants at Vimeiro 1983, at the biannual conference on
Extreme Value Analysis (EVA), in 2009, spoke about Vimeiro’s meeting as
EVA–0, and when I read at EVA 2013 website: ‘It has been 30 years since the
so-called zero-th EVA conference took place in 1983 in Vimeiro, a small town
near the beach in Portugal’ . . . I indeed felt some “nostalgia” . . . And among
a few people I missed at the conference on Extremes in Vimeiro Today (EVT
2013), organized by my dear colleagues and friends, Antónia Amaral Turkman,
Isabel Fraga Alves and Manuela Neves, to commemorate the thirty years of
the NATO ASI on SEA, I refer János Galambos, who could not be present at
EVT 2013.

During my talk at EVT 2013, I mentioned that it would possibly be nec-
essary to renumber EVA meetings. Indeed, prior to EVA meetings, which
began in 1998, at Gothenburg, and thinking only on events that occurred after
my PhD degree, got in 1978, we cannot forget Oberwolfach 1987 Conference
on Extremewertheorie, where János Galambos was present, as can be seen in
Figure 1, the unique photo where I could find János.

I further mentioned Gaithersburg 1993 Conference on Extreme Value The-
ory and its Applications, a conference under the organization of János Galam-
bos, where I was an invited speaker, and where, apart from a talk on J. Tiago de
Oliveira, who had unfortunately died in 1992, I also talked on the penultimate
behaviour of extremes (Gomes, 1994), the topic that is now under discussion,
and my main scientific link with János Galambos, a pioneer in the topic of
rates of convergence in EVT (Galambos, 1978).
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Figure 1. Oberwolfach 1987 Conference on Extremewertheorie

1.1. Scope of the article

The study of the exact right-tail function (RTF) or reliability function (RF)
of any complex and coherent technologic or biometric system, S, with lifetime
TS and associated cumulative distribution function (CDF) F

TS
(·), given by

(1.1) R
TS

(t) := P(TS > t) = 1− F
TS

(t) =: F
TS

(t),

the most common notation for the RTF of F
TS

, whenever working in the field

of EVT, can be an intractable problem due to the large number, n, of system’s
components and/or to the way the operating process uses such components.
Among others, we mention transport networks of oil, gas and water, telecom-
munication and electrical energy distribution networks, charge and discharge
networks. Let us denote by (T1, . . . , Tn) the lifetimes of those n components,
and by (T1:n ≤ · · · ≤ Tn:n) the sample of associated ascending order statis-
tics (OSs), with T1:n = min1≤i≤n Ti and Tn:n = max1≤i≤n Ti. As proved in
Samaniego (1985), the lifetime TS of any coherent system can always be writ-
ten as an OS associated with (T1, . . . , Tn). Further details on the role of OSs
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in reliability are thus given in Section 2, where we also refer possible and ac-
curate reliability lower and upper bounds for the RF, in (1.1). On the basis
of EVT, our strategy is here similar to the one in Reis and Canto e Castro
(2009), Reis (2012), Reis et al. (2015) and Gomes et al. (2017), being essen-
tially the following: Assuming that the number of components of a system S
goes to infinity, asymptotic EV or ultimate models often provide a good in-
terpretation and accurate estimation of the RF of S, or at least of lower and
upper bounds for such an RF. Considering that n is fixed despite of large, pre-
asymptotic or penultimate models provide an improvement of the convergence
rate and a better approximation to the RF of S. A brief reference to the main
asymptotic result in EVT is provided in Section 3, introducing the notions of
rate of convergence and pre-asymptotic or penultimate behaviour of extreme
OSs. In Section 4, ultimate and penultimate approximations for the RFs of
regular and homogeneous parallel series (PS) systems, parallel structures with
components connected in series, are discussed. In Section 5, alternative penul-
timate approximations are put forward and a few overall comments are drawn
in Section 6.

2. Order statistics and reliability bounds

It is obvious that TS = T1:n = min (T1, . . . , Tn) is the lifetime of a series
system, the one that works if and only if all its n components work, represented
by

1 2 n

For a parallel system, the one that works if and only if at least one of its n
components work, represented by

1

2

n

we get TS = Tn:n = max (T1, . . . , Tn). More generally, we can always write the
distributional identity, TS = TI:n, where I is a discrete random variable (RV)
with support {1, . . . , n}. The vector s := (s1, . . . , sn), with si := P(I = i),
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1 ≤ i ≤ n (
∑n

i=1 si = 1), is the so-called signature of the system (Samaniego,
1985). For a series system, the signature is s := (1, . . . , 0), and for a parallel
system, the signature is s := (0, . . . , 1).

For any system S, the most crude lower and upper RF bounds are respec-
tively given by the RFs of the associated series (S) and parallel (P) systems,
with all components working independently. Let us assume that the lifetimes
Ti, 1 ≤ i ≤ n, are independent, identically distributed (IID) from a model F ,
and associated RF, R = 1− F . Then, with

Mn(t) = Fn(t) = (1−R(t))n and mn(t) = 1− (1− F (t))n = 1−Rn(t),

the CDFs of Tn:n and T1:n, respectively, we have

(2.1) L
S
(t) := 1−mn(t) ≤ R

TS
(t) ≤ 1−Mn(t) =: U

P
(t).

Moreover, without mentioning the definition of a coherent system (see Barlow
and Proschan, 1975, for details on the topic), we further state the following
relevant result in reliability: Any coherent structure can be represented either
as a PS or a series-parallel (SP) structure, a series structure with components
connected in parallel. To find the aforementioned PS and SP representations
of a system, we need to identify the so-called minimal paths—paths without
irrelevant components that enable the operation of the system, and the so-
called minimal cuts—a set of relevant components that will imply the failure
of the system whenever removed.

Example 2.1. As an illustration, consider the structure in Figure 2.

1

2

3

4

5 6

Figure 2. A series-bridge structure

For this structure, we have the minimal paths, {1, 2, 4}, {1, 5, 6}, {1, 2, 3, 6},
{1, 5, 3, 4}, and the minimal cuts, {1}, {2, 5}, {4, 6}, {2, 3, 6}, {5, 3, 4}.
Consequently, we can write the distributional identities

TS = max
{
min (T1, T2, T4), min (T1, T5, T6), min (T1, T2, T3, T6),

min (T1, T3, T4, T5)
}
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and

TS = min
{
T1,max (T2, T5),max (T4, T6),max (T2, T3, T6),max (T3, T4, T5)

}
.

We obviously need to pay attention to the strong dependence of the different
RVs under play either in the overall max or min operators. But we can easily
build reliable upper and lower bounds for the reliability, respectively on the
basis of the minimal paths (assuming they are disjoint) and the minimal cuts
(assuming they are independent).

Generally speaking, let Pj , 1 ≤ j ≤ p = pn, denote the minimal paths,
and Cj , 1 ≤ j ≤ s = sn, the minimal cuts. Then, and for non-necessarily ID
components, i.e. assuming that the lifetime Ti comes from a CDF Fi, 1 ≤ i ≤ n,
we have

s∏
j=1

(
1−

∏
i∈Cj

(Fi(t))
)
≤ R

TS
(t) ≤ 1−

p∏
j=1

(
1−

∏
i∈Pj

(1− Fi(t))
)
.

For sake of simplicity, we now assume that all minimal paths have the same
size l = ln and that all minimal cuts have a size r = rn (the so-called regular
system), and that Ri(t) = R(t), 1 ≤ i ≤ n (the so-called homogeneous system).
Then, using the notation,

L
SP

(t) :=
(
1− (1−R(t))rn

)sn
=:

(
1−Mrn(t)

)sn

and

U
PS

(t) := 1−
(
1−Rln(t)

)pn
=: 1−

(
mln(t)

)pn
,

with n = rnsn = lnpn, we get

(2.2) L
SP

(t) ≤ R
TS

(t) ≤ U
PS

(t).

The lower and upper bounds in (2.2) are quite reliable, particularly when
compared with the crude lower and upper bounds, in (2.1), respectively given
by associated series and parallel systems, with all the n components of our
system S. The bounds L

SP
and L

PS
are much more accurate, as can be seen

from Figure 3, where we consider the static counterpart of the RF, writing
p := R(t), and represent for ln = rn = 2, sn = pn = 10 (n = 20), as well as
for ln = rn = 4, sn = pn = 15 (n = 60), the lower bounds L

S
≡ L

S
(p) = pn,

L
SP

≡ L
SP

(p) =
(
1 − (1 − p)rn

)sn
, and the upper bounds U

P
≡ U

P
(p) =

= 1− (1− p)n, U
PS

≡ U
PS

(p) = 1−
(
1− pln

)pn
, as functions of p.



Revisiting rates of convergence and penultimate approximations 141

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

L
S

L
SP

U
P

U
PS

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

L
S

L
SP

U
P

U
PS

p p

n = 20 (ln = rn = 2; sn = pn = 10) n = 60 (ln = rn = 4; sn = pn = 15)

Figure 3. Lower and upper reliability bounds

3. The main limiting results in EVT

EVT provides a great variety of limiting results that enable us to deal with
alternative approaches in the statistical analysis of extreme events. The main
limiting result in EVT is due to Gnedenko (1943). In this seminal paper, Boris
Gnedenko has fully characterized the possible non-degenerate limiting CDF of
the linearly normalized maximum, (Tn:n − bn)/an, an > 0, bn ∈ R. Such a
limit is of the type of the general EV distribution for maxima (EVMD), the
unique max-stable law, given by

(3.1) G(t) ≡ Gξ(t) :=

{
exp(−(1 + ξt)−1/ξ), 1 + ξt > 0, if ξ �= 0,
exp(− exp(−t)), t ∈ R, if ξ = 0.

The shape parameter ξ, the so-called extreme value index for maxima (EVIM),
measures the heaviness of the RTF or RF F (t) ≡ R(t) = 1−F (t), as t → +∞,
and the heavier the right-tail, the larger ξ is.

The EVMD is sometimes separated in the three following types,

Type I (Gumbel) : Λ(t) = exp(− exp(−t)), t ∈ R,
Type II (Fréchet) : Φα(t) = exp(−t−α), t ≥ 0,
Type III (max-Weibull) : Ψα(t) = exp(−(−t)α), t ≤ 0,

with α > 0, the types considered in Gnedenko (1943).

As mentioned before, the parameter ξ, in (3.1), measures essentially the
weight of the RTF, F = 1−F : If ξ < 0 (max-Weibull, with α = −1/ξ), the right
tail is light, and F has a finite right endpoint (tF := sup{t : F (t) < 1} < +∞);
If ξ > 0 (Fréchet, with α = 1/ξ), the right tail is heavy, of a negative polynomial
type, and F has an infinite right endpoint; If ξ = 0 (Gumbel), the right tail is
of an exponential type. The right endpoint can then be either finite or infinite.
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Remark 3.1. Any result for maxima has its counterpart for minima due to
the fact that min1≤i≤n Ti = −max1≤i≤n(−Ti). We thus have the min-stable
laws or EVmD

(3.2) G∗(t) ≡ G∗
θ(t) :=

{
1− e−(1−θt)−1/θ

, 1− θt > 0, if θ �= 0,

1− e−et , t ∈ R, if θ = 0.

We then say that the CDF F of an RV T is in the min-domain of attraction of
G∗

θ, using the notation F ∈ Dm(G
∗
θ), if the CDF of −T is in the max-domain

of attraction of Gθ, i.e. with the notation H(t) = 1 − F (−t), H ∈ DM(Gθ).
The shape parameter θ, the so-called extreme value index for minima (EVIm),
measures the heaviness of the left-tail function F (t), as t → −∞ and the
heavier the left-tail, the larger θ is.

Similarly to what happens in the max-scheme, the EVmD is sometimes
separated in the three following types:

Type I (min-Gumbel) : Λ∗(t) = 1− exp(− exp(t)), t ∈ R,
Type II (min-Fréchet) : Φ∗

α(t) = 1− exp(−(−t)−α), t ≤ 0,
Type III (Weibull) : Ψ∗

α(t) = 1− exp(−tα), t ≥ 0.

Remark 3.2. In most applications involving lifetimes the limit laws G∗
θ, in

(3.2), are restricted to the case θ ≤ 0. In fact, a lifetime T is always nonneg-
ative. Thus −T is an RV with a finite right endpoint and can only be in the
max-domain of attraction of a Weibull or a Gumbel. However, since there are
systems with large durability, we also often consider the case θ > 0.

3.1. Rates of convergence and penultimate approximations

An associated important problem in EVT concerns the rate of convergence
of Fn(ant+ bn) towardsGξ(t), in (3.1), or, equivalently, the finding of estimates
of the difference

(3.3) dn(F,Gξ, t) := Fn(ant+ bn)−Gξ(t).

Indeed, parametric inference on the right-tail of F , usually unknown, is done
on the basis of the identification of Fn(ant+ bn) and of Gξ(t), replacing Fn(t)
by Gξ((t − bn)/an), with bn and an > 0 being unknown parameters to be
estimated from an adequate sample. The rate of convergence is thus important
because it may validate or not the most usual models in statistics of extremes,
and this was also already detected by Gnedenko. In EVT there exists no
analogue of the Berry-Esséen theorem that, under broad conditions, gives a
rate of convergence of the order of 1/

√
n in the Central Limit Theorem for
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sums. The rate of convergence depends here strongly on the right-tail of F ,
on the choice of the attraction coefficients (an, bn), and can be rather slow, as
first detected by Fisher and Tippet (1928). These authors were indeed the first
ones to provide a so-called penultimate max-Weibull approximation for Φn(x),
with Φ the normal CDF.

The modern theory of rates of convergence in EVT began with Anderson
(1971, 1976), Galambos (1978) and Gomes (1978). Developments have followed
different directions that can be found in Gomes (1994) and also in the more
recent review papers by Beirlant et al. (2012) and Gomes and Guillou (2015).
We refer here only the study of the structure of the remainder dn(F,Gξ, t), in
(3.3), with F ∈ DM(Gξ), ξ ∈ R, i.e. the finding of dn → 0, as n → ∞, and ϕ(t)
such that, either uniformly in t ∈ R or at least uniformly in finite intervals of
t ∈ R,

(3.4) Fn(ant+ bn)−Gξ(t) = dnϕ(t) + o(dn).

We then say that the rate of convergence of Fn(ant+ bn) towards Gξ(t) is of
the order of dn.

In this same framework, the possible penultimate behaviour of Fn(ant+ bn)
has been studied, i.e. the possibility of finding H(t) = Hn(t), perhaps a max-
stable CDF, such that

(3.5) Fn(ant+ bn)−Hn(t) = O(rn), rn = o(dn),

with dn given in (3.4). We refer Gomes (1978, 1984b, 1986), Gomes and Pestana
(1987), and Gomes and de Haan (1999), who derived, for all ξ ∈ R, exact
penultimate approximation rates, under von Mises-type conditions and some
extra differentiability assumptions. Kaufmann (2000) proved a similar result,
but under weaker conditions. This penultimate or pre-asymptotic behaviour
has further been studied by Raoult and Worms (2003), and Diebolt and Guillou
(2005), among others.

Despite of crucial, we shall not go into detail on first and second-order
conditions in the field of extremes. We just mention that: The first-order
conditions are just necessary and sufficient conditions (or sufficient conditions)
to have F ∈ DM(Gξ). The second-order conditions essentially measure the rate
of convergence in the first-order conditions and depend upon a second-order
parameter ρ (≤ 0) (see, de Haan and Ferreira, 2006, and Fraga Alves et al.,
2007, among others).

We next come to the question answered in Gomes and de Haan (1999):
under which circumstances (i.e. for which combination of ξ and ρ) can the
convergence rate be improved by the use of penultimate approximations? The
answer is: To get any improvement we need to have ρ = 0 and to choose
ξ(t) ≡ η(t) = v′′(t)/v′(t), with v(t) := u←(t), u(x) := − ln(− lnF (x)). We
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further note that ρ = 0 is valid for a large variety of models, including the
normal CDF.

4. PS systems: ultimate and penultimate models

We first state a theorem in Reis and Canto e Castro (2009). For the choice
of attraction coefficients, see also the above mentioned article.

Theorem 4.1 (Reis and Canto e Castro, 2009). Any stable law for minima,
i.e. G∗

θ, in (3.2), belongs to DM(G0), i.e. there exist sequences {an > 0}n≥1

and {bn ∈ R}n≥1 such that

(G∗
θ(ant+ bn))

n −→
n→∞

G0(t),

uniformly in t ∈ R.

We further state the following result (Reis et al., 2015):

Theorem 4.2 (Reis et al., 2015). Let F ∈ Dm(G
∗
θ), the min-domain of attrac-

tion of G∗
θ, the EVmD, i.e. let us assume that there exist sequences {an > 0}n≥1

and {bn ∈ R}n≥1 such that

1− (1− F (ant+ bn))
n −→

n→+∞
G∗

θ (t) = 1−Gθ(−t),

∀t ∈ R and where Gθ and G∗
θ are the EVMD and the EVmD, given in (3.1)

and (3.2) respectively. Then, for all θ ∈ R, and adequate (ln, pn) → (∞,∞),
as n → ∞, there exist sequences {αn > 0}n≥1 and {βn ∈ R}n≥1 such that for
all t ∈ R,

F
TS

(αnt+ βn) :=
(
1− (1− F (αnt+ βn))

ln
)pn

−→
n→∞

Λ(t) ≡ G0(t).

Consequently, for a regular homogeneous PS system, composed by pn parallel
subsystems with ln components in series, the sequence of RFs, suitably normal-
ized is such that

R
TS

(αnt+ βn) = 1− F
TS

(αnt+ βn) −→
n→∞

1−G0(t),

for all t ∈ R.
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4.1. Right tail penultimate behaviour of min-stable laws

Also proved in Reis et al. (2015), we further state:

Theorem 4.3 (Reis et al., 2015). For all θ �= −1, the min-stable law G∗
θ,

in (3.2), is under the conditions of the main theorem in Gomes and de Haan
(1999). Consequently,

lim
n→∞

(G∗
θ(ant+ bn))

n −Gξn(t)

(θ + 1)/ ln2 n
=

t3G′
0(t)

6
,

uniformly for all t ∈ R, with (an, bn) the attraction coefficients in Theorem 4.1,
and where ξn is asymptotically given by

ξn = −θ + 1

lnn
+O

(
1

n

)
.

We further have

(G∗
θ(ant+ bn))

n −G0(t) = O(1/ lnn).

Remark 4.1. Note that if θ = −1, von Mises first-order condition holds,
but the ultimate aproximation

(
G∗

−1 (ant+ bn)
)n ≈ G0 (x) cannot possibly be

improved. If θ < −1, ξn > 0, and Gξn is a penultimate sequence of Fréchet
distributions for (G∗

θ)
n
. If θ > −1, ξn < 0, and Gξn is a penultimate sequence

of max-Weibull distributions for (G∗
θ)

n
.

5. Alternative penultimate approximations

In Reis et al. (2015) and Gomes et al. (2017), several PS(ln,pn) systems have
been simulated, with lifetime components from different models, including the
EVmD(θ), for θ = −2(0.5)1. The hypothesis H0 : G∗

n = 1 − (1− F )
ln ∈

∈ DM (Gξ) , for some ξ ∈ R, was not rejected, and no typical behaviour was
detected on the variation of ln. The ultimate law G0 was also tested, and the
null hypothesis, H0 : Fn (t) = G0 ((t− λ)/δ) , with Fn (t) the CDF of the
lifetime of a PS system and (λ, δ) ∈ R × R+ a vector of unknown (location
and scale) parameters, was rejected except for θ = −1 (showing consistency
between simulated and theoretical results).

The main question is the following one: Are the estimates of ξ closer to a
penultimate parameter ξn = −(θ+1)/ lnn rather than to the ultimate param-
eter zero? In the aforementioned articles, the parameter ξ in the EV model
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has been estimated through ξ̂(1), the maximum likelihood (ML) estimate, and
a positive answer to the aforementioned question was provided.

We now suggest also the consideration in (3.5) of the penultimate model
considered in Smith (1987), which further depends on an unknown shape pa-
rameter r, being given by

(5.1) PEVξ(t; r) = exp
(
−(1 + ξt)−1/ξ

(
1 + r(1 + ξt)−1/ξ

))
, 1 + ξt > 0.

Let us denote by ξ̂(2) any adequate estimate of ξ in (5.1). On the basis of R
runs, it is thus sensible to simulate, for j = 1, 2, the root mean square error
(RMSE) and BIAS-values,

RMSEP j =

√
1
R

R∑
i=1

(
ξ̂
(j)
i −ξn

)2

, RMSEUj
=

√
1
R

R∑
i=1

(
ξ̂
(j)
i

)2

,

BIASPj
= 1

R

R∑
i=1

(
ξ̂
(j)
i −ξn

)
, BIASUj

= 1
R

R∑
i=1

ξ̂
(j)
i .

We then often have MSEP2
<MSEP1

<MSEU1
<MSEU2

, for ξ �= −1, and a
similar relation for |BIAS|, in most simulations. Only for ξ = −1 are we led to
the adoption of a Gumbel model for Fn.

6. Overall conclusions

Due to the finiteness of n, the number of system’s components, the assump-
tion that n goes to infinity can be considered somewhat restrictive. Hence the
reason for considering a fixed large number of components and pre-asymptotic
approximations. We are conscious that the restriction that the RF of all com-
ponents of the system is the same is quite strong, and such an assumption was
used only as a simplification. More intricate but similar work can be done for
non-homogeneous systems. Applications of the developed theory are feasible,
but still at the beginning. And now, that we have access to highly sophisticated
computational techniques, a great variety of parametric models can further be
considered, like the penultimate EV parametric model in (5.1), which surely
deserves further attention. The penultimate or pre-asymptotic behaviour can
also be worked under a multivariate framework. The rate of convergence de-
pends then not only on the marginals, but also on the dependence function
(Omey and Rachev, 1991). The road from univariate to multivariate EVT is
confronted from the beginning with a problem: there is not a single way to
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order multivariate observations. Barnett (1976) considers different categories
of order relations for multivariate data, each being of potential use. We partic-
ularly like the one related to concomitants of OSs (see David and Galambos,
1974; Gomes, 1984a, 1985, among others). But the most useful order relation
in multivariate EVT is a special case of what is called marginal ordering. The
sample maximum needs not to be a sample point and the definition might thus
seem artificial. Still, from its study a rich theory emanates that leads to a
broad set of statistical tools for analysing extremes of multivariate data (see
Beirlant et al., 2004, and de Haan and Ferreira, 2006, among others), most of
the times based on multivariate max-stable models. Penultimate models that
are appropriate in the most flexible existing model for multivariate extremes,
the one related to conditional extremes, introduced by Heffernan and Tawn
(2004), have been recently discussed in Lugrin et al. (2019). And we believe
that both aforementioned multivariate frameworks have an important role in
the reliability of stress-strength models (Eryilmaz, 2008), where systems are
subjected to a random stress over time, a research topic still in progress.
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