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Abstract. Given a positive integer n, let ρ1(n) = max{d | n : d ≤
√
n}

and ρ2(n) = min{d | n : d ≥
√
n} stand for the middle divisors of n.

We obtain improvements and new estimates for sums involving these two
functions.

1. Introduction

Given a positive integer n, we define the numbers ρ1(n) and ρ2(n) as

ρ1(n) := max{d | n : d ≤
√
n}

ρ2(n) := min{d | n : d ≥
√
n}

and call them the middle divisors of n. It is clear that ρ1(n)ρ2(n) = n and also
that if n is not a perfect square, then ρ1(n) < ρ2(n).

In 1976, Tenenbaum [5] proved that

∑
n≤x

ρ2(n) =
π2

12

x2

log x

(
1 +O

(
1

log x

))
(1.1)
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and that, given any ε > 0, there exists x0 = x0(ε) such that for all x ≥ x0,

x3/2

(log x)δ+ε
<

∑
n≤x

ρ1(n) �
x3/2

(log x)δ(log log x)1/2
,

where

(1.2) δ = 1− 1 + log log 2

log 2
≈ 0.086071.

More recently, Ford [1] showed that

∑
n≤x

ρ1(n) �
x3/2

(log x)δ(log log x)3/2
.(1.3)

Here, we provide a refinement and a generalisation of (1.1) as well as a
generalisation of (1.3), and we then use these results to obtain estimates for∑

n≤x ρ2(n)/ρ1(n)
r, for every fixed real r > −1, and for

∑
n≤x ρ1(n)/ρ2(n),

thereby improving an earlier estimate by Roesler [4] in the case of the second
sum.

2. Main theorems

Theorem 1. Let a > 0 be a real number. Then, for each positive integer k,

∑
n≤x

ρ2(n)
a = c0

xa+1

log x
+ c1

xa+1

log2 x
+ · · ·+ ck−1

xa+1

logk x
+O

(
xa+1

logk+1 x

)

where, for � = 0, 1, . . . , k − 1,

c� = c�(a) =
�!

(a+ 1)�+1

�∑
j=0

(a+ 1)j(−1)jζ(j)(a+ 1)

j!

with ζ standing for the Riemann zeta function.

Theorem 2. Let a > 0 be a real number and let δ be as in (1.2). Then,

∑
n≤x

ρ1(n)
a � x

a+2
2

(log x)δ(log log x)3/2
.(2.1)

Theorem 3. Given any integer k ≥ 1 and any real number r > −1, we have

∑
n≤x

ρ2(n)

ρ1(n)r
= e0

x2

log x
+ e1

x2

log2 x
+ · · ·+ ek−1

x2

logk x
+O

(
x2

logk+1 x

)
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where e0 =
ζ(r + 2)

2
and for each 1 ≤ � ≤ k − 1,

e� =

(
r + 2

2

)
c� +

�−1∑
ν=0

rcν
2

�−1∏
m=ν

(
m+ 1

2

)
,

with, for each ν = 0, 1, . . . , �,

cν =
ν!

(r + 2)ν+1

ν∑
j=0

(r + 2)j(−1)jζ(j)(r + 2)

j!
.

Remark. Interestingly, as a consequence of Theorem 3,

Tr(x) :=
∑
n≤x

ρ2(n)

ρ1(n)r
∼ ζ(r + 2)

2

x2

log x
as x → ∞,

implying that all sums Tr(x) are of the same order, independently of the chosen
number r > −1. For instance, although it may at first appear counterintuitive,

we do have that
∑
n≤x

ρ2(n)
√
ρ1(n) �

∑
n≤x

ρ2(n)√
ρ1(n)

.

Theorem 4. With δ as in (1.2), we have

∑
n≤x

ρ1(n)

ρ2(n)
� x

(log x)δ(log log x)3/2
.

3. Preliminary results

Let π(x) stand for the number of primes not exceeding x and let

Li(x) :=

x∫

2

dt

log t
.

We will be using the prime number theorem with an error term which
is sufficient for our purposes, namely the original one found by de la Vallée
Poussin [6] in 1899.

Proposition 1. (Prime number theorem.) There exists a positive constant C
such that

π(x)− Li(x) = O
(
x exp

{
−C

√
log x

})
.

Lemma 1. Assume that n ≤ x with ρ2(n) > x2/3. Then, ρ2(n) is a prime.
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Proof. Since ρ2(n) > x2/3, we have that ρ1(n) < x1/3. Set m = ρ2(n).
It is clear that both ρ1(m) and ρ2(m) are divisors of n. Hence, in order to
prove that ρ2(n) is prime, it is sufficient to prove that ρ2(m) = m. Now, since
ρ2(m) ≥

√
m =

√
ρ2(n) > x1/3 > ρ1(n), it follows hat ρ1(n) < ρ2(m) ≤ ρ2(n),

which implies, by the definition of ρ1(n) and ρ2(n) that ρ2(m) = ρ2(n) = m,
thus proving our claim. �

The following result is not new. We include it here for the sake of com-
pleteness.

Lemma 2. Given any fixed real number a > 0,

(3.1) S(x) = Sa(x) :=
∑
p≤x

pa =

x∫

2

ta

log t
dt+O

(
xa+1

eC
√
log x

)
.

Proof. Using partial summation with A(x) =
∑

n≤x a(n) = π(x) and ϕ(t) =
= ta, we have

(3.2) S(x) = xaπ(x)−
x∫

2

ata−1π(t) dt.

Using Proposition 1, it follows from (3.2) and integration by parts that

S(x) = xaπ(x)− a

x∫

2

ta−1
(
Li(t) +O(te−C

√
log t)

)
dt =

= xaπ(x)− a

x∫

2

ta−1Li(t) dt+O




x∫

2

tae−C
√
log t dt


 =

= xaπ(x)− a


 ta

a
Li(t)

∣∣∣∣
x

2

−
x∫

2

ta

a

1

log t
dt


+O

(
xa+1

eC
√
log x

)
=

= xaπ(x)− xaLi(x) +

x∫

2

ta

log t
dt+O

(
xa+1

eC
√
log x

)
.(3.3)

Using Proposition 1 one more time, we have that

xaπ(x)− xaLi(x) = xa(π(x)− Li(x)) = O

(
xa+1

eC
√
log x

)
,

which substituted in (3.3) completes the proof of (3.1). �
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Lemma 3. Let a > 0 be an arbitrary real number. Then,

(3.4)
∑

√
x<p≤x

pa
⌊
x

p

⌋
=

x∫

√
x

ta

log t

⌊x
t

⌋
dt+O

(
xa+1

e
C
2

√
log x

)
.

Proof. We follow an approach used by Naslund [3] to estimate a similar sum.
Let B be a positive integer. Then,

∑
x/B<p≤x

pa
⌊
x

p

⌋
=

∑
n≤B−1

n
∑

x/(n+1)<p≤x/n

pa =

=
∑

n≤B−1

n(S(x/n)− S(x/(n+ 1))) =

= S(x) + S(x/2) + · · ·+ S(x/(B − 1))− (B − 1)S(x/B) =

=
∑

n≤B−1

(S(x/n)− S(x/B)) .

Using Lemma 2 in this last estimate, we obtain, provided that B ≥ x1/4,

∑
x/B<p≤x

pa
⌊
x

p

⌋
=

∑
n≤B−1

x/n∫

x/B

ta

log t
dt+O


 ∑

n≤B−1

(x/n)a+1

eC
√

log(x/n)


 =

=

x∫

x/B

ta

log t

⌊x
t

⌋
dt+O

(
xa+1

eC
1
2

√
log x

∞∑
n=1

1

na+1

)
.

Choosing B = �
√
x� allows us to write this last equation as

(3.5)
∑

√
x<p≤x

pa
⌊
x

p

⌋
=

x∫

√
x

ta

log t

⌊x
t

⌋
dt+O

(
xa+1

e
C
2

√
log x

)
,

thereby completing the proof of (3.4). �

Lemma 4. Let a > 0 be an arbitrary real number. Then,

(3.6)
∑
p≤x

pa
⌊
x

p

⌋
=

x∫

2

ta

log t

⌊x
t

⌋
dt+O

(
xa+1

e
C
2

√
log x

)
.

Proof. Since the two quantities
∑

p≤
√
x

pa
⌊
x

p

⌋
and

√
x∫

2

ta

log t

⌊x
t

⌋
dt are each of

smaller order than the error term appearing in (3.5), we may indeed conclude
from (3.5) that (3.6) holds. �
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Lemma 5. For all s > 1 and for each integer k ≥ 1,

ζ(k)(s) = (−1)k
∞∑

n=1

logk n

ns
.

Proof. Differentiating k times with respect to s both sides of equation

ζ(s) =
∞∑

n=1

1

ns
yields the result. �

Lemma 6. Let a > 0 be an arbitrary real number. Then, for each integer
k ≥ 1,

x∫

2

ta �x/t�
log t

dt = c0
xa+1

log x
+ c1

xa+1

log2 x
+ · · ·+ ck−1

xa+1

logk x
+O

(
xa+1

logk+1 x

)
,

where

c� = c�(a) =
�!

(a+ 1)�+1

�∑
j=0

(a+ 1)j(−1)jζ(j)(a+ 1)

j!
.

Proof. We use the same technique that Naslund [2] used to estimate a similar
integral. With the change of variable t = x/u, we obtain

νa(x) :=

x∫

2

ta �x/t�
log t

dt = xa+1

x/2∫

1

�u�
ua+2 log

(
x
u

)du =

=
xa+1

log x

x/2∫

1

�u�
ua+2

(
1− log u

log x

)−1

du.

Since 1 ≤ u ≤ x/2, we have
log u

log x
< 1. We can therefore write that for each

integer k ≥ 1,
(
1− log u

log x

)−1

= 1 +
log u

log x
+ · · ·+

(
log u

log x

)k−1

+

(
log u

log x

)k (
1− log u

log x

)−1

.

From this, it follows that

νa(x) =
xa+1

log x

k−1∑
�=0

1

log� x

x/2∫

1

�u�
ua+2

log� u du+

+
xa+1

logk+1 x

x/2∫

1

�u�
ua+2

logk+1 u

(
1− log u

log x

)−1

du.
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Since the integral

x/2∫

1

�u�
ua+2

logk+1 u

(
1− log u

log x

)−1

du converges, we have

that

νa(x) =
xa+1

log x

k−1∑
�=0

1

log� x

x/2∫

1

�u�
ua+2

log� u du+O

(
xa+1

logk+1 x

)
=

=
xa+1

log x

k−1∑
�=0

1

log� x




∞∫

1

�u�
ua+2

log� u du−
∞∫

x/2

�u�
ua+2

log� u du


+

+O

(
xa+1

logk+1 x

)
.(3.7)

On the other hand, since

∞∫

x/2

�u�
ua+2

log� u du ≤
∞∫

x/2

log� u

ua+1
du = O

(
log� x

xa

)
,

it follows from (3.7) that

νa(x) =
xa+1

log x

k−1∑
�=0

c�

log� x
+O

(
xa+1

logk+1 x

)
,

where c� =

∞∫

1

�u�
ua+2

log� u du.

It remains to obtain explicit expressions for the constants c�. We have

c� =

∞∫

1

�u�
ua+2

log� u du =

∞∑
s=1

s

s+1∫

s

log� u

ua+2
du.

Performing integration by parts k times yields

s+1∫

s

log� u

ua+2
du =

�∑
i=0

�!

(�− i)!(a+ 1)i+1

(
log�−i s

sa+1
− log�−i(s+ 1)

(s+ 1)a+1

)
,

so that, using Lemma 5, we get

∞∑
s=1

s

s+1∫

s

log� u

ua+2
du =
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=

∞∑
s=1

(
s

�∑
i=0

�!

(�− i)!(a+ 1)i+1

(
log�−i s

sa+1
− log�−i(s+ 1)

(s+ 1)a+1

))
=

=

�∑
i=0

�!

(�− i)!(a+ 1)i+1

( ∞∑
s=1

s

(
log�−i s

sa+1
− log�−i(s+ 1)

(s+ 1)a+1

))
=

=

�∑
i=0

�!

(�− i)!(a+ 1)i+1

( ∞∑
s=1

log�−i s

sa+1

)
=

=

�∑
i=0

�!

(�− i)!

(−1)�−iζ(�−i)(a+ 1)

(a+ 1)i+1
.

Setting j = �−i, we conclude that c� =
�!

(a+ 1)�+1

�∑
j=0

(a+ 1)j(−1)jζ(j)(a+ 1)

j!
,

thus completing the proof of Lemma 6. �

Let H(x, y, z) stand for the number of positive integers n ≤ x having a
divisor in the interval (y, z].

Theorem A. (Ford [1], Théorème 1(v)) Let x, y, z be real numbers all strictly
positive. If x > 100000, 100 ≤ y ≤ z − 1, y ≤

√
x and 2y ≤ z ≤ y2, then

H(x, y, z) � xuδ

(
log

2

u

)−3/2

,

where u is defined implicitly by z = y1+u and where δ is the constant defined
in (1.2).

Theorem B. (Ford [1], Théorème 2) For y0 ≤ y ≤
√
x, z ≥ y + 1 and

x

log10 z
≤ ∆ ≤ x, we have

H (x, y, z)−H (x−∆, y, z) � ∆

x
H (x, y, z) .

4. Proof of Theorem 1

Using Lemma 1, we easily obtain that
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∑
n≤x

ρ2(n)
a =

=
∑
n≤x

ρ2(n)>x2/3

ρ2(n)
a +O

(
x

2a+3
3

)
=

∑
x2/3<p≤x

pa
∑
n≤x

ρ2(n)=p

1 +O
(
x

2a+3
3

)
=

=
∑

x2/3<p≤x

pa
∑

mp≤x

1 +O
(
x

2a+3
3

)
=

∑
x2/3<p≤x

pa
⌊
x

p

⌋
+O

(
x

2a+3
3

)
=

=
∑
p≤x

pa
⌊
x

p

⌋
−

∑
p≤x2/3

pa
⌊
x

p

⌋
+O

(
x

2a+3
3

)
=

= Σ1 − Σ2 +O
(
x

2a+3
3

)
,(4.1)

say. From Lemma 2, we obtain that

(4.2) Σ2 =
∑

p≤x2/3

pa
⌊
x

p

⌋
≤ x

∑
p≤x2/3

pa−1 � x

x2/3∫

2

ta−1

log t
dt � x

2a+3
3

log x
.

Hence, it follows from (4.1) and (4.2) that

(4.3)
∑
n≤x

ρ2(n)
a =

∑
p≤x

pa
⌊
x

p

⌋
+O

(
x

2a+3
3

)
.

Finally, combining the results of Lemmas 4 and 6 in (4.3), the proof of Theo-
rem 1 is complete.

5. Proof of Theorem 2

Observe that the relation (2.1) we need to prove is equivalent to

(5.1)
x

a+2
2

(log x)δ(log log x)3/2
�

∑
n≤x

ρ1(n)
a � x

a+2
2

(log x)δ(log log x)3/2
.

We will first show the first inequality in relation (5.1). We start by observing

that if x/2 < n ≤ x, then n has a divisor d1 satisfying
√
x
2 < d1 ≤

√
x if and
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only if ρ1(n) >
√
x
2 . It follows from this that

∑
n≤x

ρ1(n)
a ≥

∑
x/2<n≤x

ρ1(n)>
√

x/2

ρ1(n)
a >

(√
x

2

)a ∑
x/2<n≤x

ρ1(n)>
√

x/2

1 ≥

≥
(√

x

2

)a ∑
x/2<n≤x
∃ d1|n

d1∈(
√

x/2,
√

x]

≥

≥
(√

x

2

)a (
H

(
x,

√
x

2
,
√
x

)
−H

(
x

2
,

√
x

2
,
√
x

))
.

Using Theorem B followed by Theorem A (with ∆ = x/2), we find that

H

(
x,

√
x

2
,
√
x

)
−H

(
x

2
,

√
x

2
,
√
x

)
� x/2

x
·H

(
x,

√
x

2
,
√
x

)
�

� x ·
(
2 log 2

log x

)δ

· (log log x)−3/2 �

� x

(log x)δ(log log x)3/2
.

Combining these last two estimates, it follows that

∑
n≤x

ρ1(n)
a � x

a+2
2

(log x)δ(log log x)3/2
,

thus establishing the first inequality in (5.1).

In order to prove the second inequality in (5.1), first observe that if n ≤ x,

then it is obvious that

√
x

2k
< ρ1(n) ≤

√
x

2k−1
for some integer k ≥ 1, and

therefore that

(5.2)
∑
n≤x

ρ1(n)
a ≤

∑
k≥1

( √
x

2k−1

)a

H

(
x,

√
x

2k
,

√
x

2k−1

)
.

Then, using Theorem A, we find that

∑
k≥1

( √
x

2k−1

)a

H

(
x,

√
x

2k
,

√
x

2k−1

)
�

∑
k≥1

( √
x

2k−1

)a

x · 1

(log x)δ
1

(log log x)3/2
�

� x
a+2
2

(log x)δ(log log x)3/2
.(5.3)

Combining estimates (5.2) and (5.3), the second inequality in (5.1) is proved.
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6. Proof of Theorem 3

First observe that for each positive integer n, we have
ρ2(n)

ρ1(n)r
=

ρ2(n)
r+1

nr
.

On the other hand, it follows from Theorem 1 that for each positive integer k,

(6.1) A(x) :=
∑
n≤x

ρ2(n)
r+1 =

xr+2

log x

k−1∑
�=0

c�

log� x
+ ϑ(x),

where

ϑ(x) = O

(
xr+2

logk+1 x

)
and c� =

�!

(r + 2)�+1

�∑
j=0

(r + 2)j(−1)jζ(j)(r + 2)

j!
.

Hence, using (6.1) and partial summation, we obtain

∑
n≤x

ρ2(n)

ρ1(n)r
=

∑
n≤x

ρ2(n)
r+1

nr
= 1 +

∑
2≤n≤x

ρ2(n)
r+1

nr
=

= 1 +
A(x)− 1

xr
+

x∫

2

r

tr+1
(A(t)− 1) dt =

=
A(x)

xr
+O(1) +

x∫

2

r

tr+1
A(t)dt =

=
x2

log x

k−1∑
�=0

c�

log� x
+O

(
x2

logk+1 x

)
+

+r

k−1∑
�=0

c�

x∫

2

t

log�+1 t
dt+ r

x∫

2

ϑ(t)

tr+1
dt.(6.2)

It is easily seen that

(6.3) r

x∫

2

ϑ(t)

tr+1
dt �

x∫

2

t

logk+1 t
dt � x2

logk+1 x
.

Moreover, integrating by parts, we have

ck−1

x∫

2

t

logk t
dt =

ck−1

2

x2

logk x
+O

(
x2

logk+1 x

)
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and for 0 ≤ � ≤ k − 2,

c�

x∫

2

t

log�+1 t
dt =

c�
2

x2

log�+1 x
+

c�
2

k−2∑
i=�

x2

logi+2 x

i∏
m=�

(
m+ 1

2

)
+O

(
x2

logk+1 x

)
.

Summing on � from 0 to k − 1, we then obtain that

r

k−1∑
�=0

c�

x∫

2

t

log�+1 t
dt =

x2

log x

k−1∑
�=0

d�

log� x
+O

(
x2

logk+1 x

)
,(6.4)

where d0 =
rc0
2

, and for 1 ≤ � ≤ k − 1,

(6.5) d� =
rc�
2

+

�−1∑
ν=0

rcν
2

�−1∏
m=ν

(
m+ 1

2

)
.

This is why, combining estimates (6.2), (6.3), (6.4), (6.5), we may conclude
that

∑
n≤x

ρ2(n)

ρ1(n)r
=

x2

log x

k−1∑
�=0

e�

log� x
+O

(
x2

logk+1 x

)

with e0 =
(r + 2)c0

2
and for 1 ≤ � ≤ k − 1,

e� =

(
r + 2

2

)
c� +

�−1∑
ν=0

rcν
2

�−1∏
m=ν

(
m+ 1

2

)
.

7. Proof of Theorem 4

First observe that for each positive integer n, we have
ρ1(n)

ρ2(n)
=

ρ1(n)
2

n
. Set

A(x) :=
∑
n≤x

ρ1(n)
2 and α :=

∑
n<ee

ρ1(n)
2.
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Then, using Theorem 1 along with partial summation, we obtain that

∑
n≤x

ρ1(n)

ρ2(n)
=

∑
n≤x

ρ1(n)
2

n
= O(1) +

∑
ee≤n≤x

ρ1(n)
2

n
=

= O(1) +
A(x)− α

x
+

x∫

ee

1

t2
(A(t)− α)dt =

=
A(x)

x
+O(1) +

x∫

ee

A(t)

t2
dt �

� x

(log x)δ(log log x)3/2
+

x∫

ee

dt

(log t)δ(log log t)3/2
.

Since
x∫

ee

dt

(log t)δ(log log t)3/2
� x

(log x)δ(log log x)3/2
,

the proof of Theorem 4 is complete.
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