UNSOLVED PROBLEMS

THREE NEW CONJECTURES RELATED TO THE VALUES OF ARITHMETIC FUNCTIONS AT CONSECUTIVE INTEGERS

Jean-Marie De Koninck1 (Québec, Canada)
Imre Kátai and Bui Minh Phong (Budapest, Hungary)

1. Introduction

Let M_1^\ast stand for the set of completely multiplicative functions f such that $|f(n)| = 1$ for all integers $n \geq 1$ and let A^\ast be the set of completely additive functions. Given $f \in M_1^\ast$, we set $\delta_f(n) := f(n+1)f(n)$ for each integer $n \geq 1$, whereas given $f \in A^\ast$, we set $\Delta_f(n) := f(n+1) - f(n)$ for each integer $n \geq 1$.

Given $f \in M_1^\ast$, we say that $w \in \mathbb{C}$ is a strong limit point of the sequence $(\delta_f(n))_{n \geq 1}$ if there exists an infinite sequence of positive integers $n_1 < n_2 < \cdots$ such that $\lim_{j \to \infty} \delta_f(n_j) = w$ and $\liminf_{x \to \infty} \frac{1}{x} \# \{ n_j < x \} = c$ for some constant positive c. Similarly, given $f \in A^\ast$, we say that $w \in \mathbb{C}$ is a strong logarithmic limit point of the sequence $(\delta_f(n))_{n \geq 1}$ if there exists an infinite sequence of positive integers $n_1 < n_2 < \cdots$ such that $\lim_{j \to \infty} \delta_f(n_j) = w$ and such that $\liminf_{x \to \infty} \frac{1}{\log x} \sum_{n_j < x} \frac{1}{n_j} = c$ for some constant positive c.

Here, letting \mathcal{H} (resp. \mathcal{H}_{\log}) stand for the set of those $f \in M_1^\ast$ which have at least one strong limit point (resp. at least one strong logarithmic limit point), we conjecture that all functions in \mathcal{H} are necessarily of a certain particular form and we also conjecture that the set \mathcal{H}_{\log} is the same as the set \mathcal{H}.

\textit{Key words and phrases:} Arithmetic functions.
\textit{2010 Mathematics Subject Classification:} 11N37, 11N64.

1 Research supported in part by a grant from NSERC.
Similarly, we let K be the set of those $f \in A^*$ for which there exists some real number $\lambda \in [0, 1)$ and an infinite sequence of positive integers $n_1 < n_2 < \cdots$ such that $\lim_{j \to \infty} \|\Delta f(n_j) - \lambda\| = 0$ and $\liminf_{x \to \infty} \frac{1}{x} \#\{n_j < x\} = c$ for some positive constant c. Here, we conjecture that all functions in $f \in K$ can be written as $f(n) = d \log n + u(n) + v(n)$ for some constant $d > 0$ and where $u(n)$ and $v(n)$ are some basic functions belonging to the set K.

2. Characterisation of those functions belonging to H

Consider the following three categories of functions.

(A) Those functions f of the form $f(n) = n^t$ for some real number t. Clearly, all these functions belong to H.

(B) Those functions $f \in M_1^*$ such that for some $k \in \mathbb{N}$, we have $f^k(n) = 1$ for all integers $n \geq 1$. Clearly, all these functions also belong to H.

(C) Let B a set of primes such that $\sum_{p \in B} 1/p < \infty$. Moreover, let $\mathcal{N}(B)$ be the multiplicative semigroup generated by B. We construct a particular function $f \in M_1^*$ as follows. Let ξ be an arbitrary point on the unit circle. We then define f on the primes p by

$$f(p) = \begin{cases} \xi & \text{if } p \in B, \\ 1 & \text{if } p \notin B. \end{cases}$$

One can prove that such functions f belong to H. Indeed, let f be such a function and let $b_1, b_2 \in \mathcal{N}(B)$ be such that $(b_1, b_2) = 1$. Since the set of those positive integers n of the form $n = b_1 \nu$ and for which $b_2 \mu - b_1 \nu = 1$ with $(\mu \nu, B) = 1$ is of positive density, we may therefore conclude that $f \in H$.

Given three arithmetic functions f_A, f_B, f_C belonging to the categories A, B, C, respectively, consider the arithmetic function $f(n) := f_A(n) \cdot f_B(n) \cdot f_C(n)$. One can easily prove that $f \in H$.

Conjecture 1. If $f \in H$, then $f(n) = f_A(n) \cdot f_B(n) \cdot f_C(n)$ for some functions f_A, f_B, f_C belonging to the categories A, B, C, respectively.

Conjecture 2. The set H_{\log} is the same as the set H.
3. Characterisation of those functions belonging to K

Consider the following three categories of functions.

(A1) Those functions f of the form $f(n) = d \log n$ for some real number d. Clearly, all these functions belong to K.

(B1) Let $u \in A^*$ be such that $ku(n) \equiv 0 \pmod{1}$ for some $k \in \mathbb{N}$. One can easily see that all such functions u belong to K.

(C1) Let B a set of primes such that $\sum_{p \in B} 1/p < \infty$. We construct a particular function $v \in A^*$ as follows. Let ξ be an arbitrary point on the unit circle. We then define v on the primes p by

$$v(p) = \begin{cases} \xi & \text{if } p \in B, \\ 0 \pmod{1} & \text{if } p \notin B. \end{cases}$$

One can prove that such functions v belong to K.

Given any real number d and two arithmetic functions u and v belonging respectively to the categories B1 and C1, consider the arithmetic function $f(n) := d \log n + u(n) + v(n)$. One can easily prove that $f \in K$.

Conjecture 3. If $f \in K$, then $f(n) = d \log n + u(n) + v(n)$ for some real number d and some functions u and v belonging respectively to the categories B1 and C1.

J.-M. De Koninck
Département de mathématiques
Université Laval
Québec
Québec G1V 0A6
Canada
jmdk@mat.ulaval.ca

I. Kátai and B.M. Phong
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
Pázmány Péter sétány 1/C
H-1117 Budapest, Hungary
katai@inf.elte.hu
bui@inf.inf.elte.hu