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UNSOLVED PROBLEMS

THREE NEW CONJECTURES RELATED TO THE

VALUES OF ARITHMETIC FUNCTIONS AT

CONSECUTIVE INTEGERS

Jean-Marie De Koninck1 (Québec, Canada)

Imre Kátai and Bui Minh Phong (Budapest, Hungary)

1. Introduction

Let M∗
1 stand for the set of completely multiplicative functions f such that

|f(n)| = 1 for all integers n ≥ 1 and let A∗ be the set of completely additive
functions. Given f ∈ M∗

1, we set δf (n) := f(n+1)f(n) for each integer n ≥ 1,
whereas given f ∈ A∗, we set ∆f (n) := f(n+1)− f(n) for each integer n ≥ 1.

Given f ∈ M∗
1, we say that w ∈ C is a strong limit point of the sequence

(δf (n))n≥1 if there exists an infinite sequence of positive integers n1 < n2 < · · ·
such that limj→∞ δf (nj) = w and lim inf

x→∞

1

x
#{nj < x} = c for some constant

positive c. Similarly, given f ∈ A∗, we say that w ∈ C is a strong logarithmic
limit point of the sequence (δf (n))n≥1 if there exists an infinite sequence of
positive integers n1 < n2 < · · · such that limj→∞ δf (nj) = w and such that

lim inf
x→∞

1

log x

∑
nj<x

1

nj
= c for some constant positive c.

Here, letting H (resp. Hlog) stand for the set of those f ∈ M∗
1 which have at

least one strong limit point (resp. at least one strong logarithmic limit point),
we conjecture that all functions in H are necessarily of a certain particular form
and we also conjecture that the set Hlog is the same as the set H.
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Similarly, we let K be the set of those f ∈ A∗ for which there exists some real
number λ ∈ [0, 1) and an infinite sequence of positive integers n1 < n2 < · · ·
such that limj→∞ ‖∆f (nj) − λ‖ = 0 and lim inf

x→∞

1

x
#{nj < x} = c for some

positive constant c. Here, we conjecture that all functions in f ∈ K can be
written as f(n) = d log n+u(n)+v(n) for some constant d > 0 and where u(n)
and v(n) are some basic functions belonging to the set K.

2. Characterisation of those functions belonging to H

Consider the following three categories of functions.

(A) Those functions f of the form f(n) = nit for some real number t. Clearly,
all these functions belong to H.

(B) Those functions f ∈ M∗
1 such that for some k ∈ N, we have fk(n) = 1

for all integers n ≥ 1. Clearly, all these functions also belong to H.

(C) Let B a set of primes such that
∑

p∈B 1/p < ∞. Moreover, let N (B) be
the multiplicative semigroup generated by B. We construct a particular
function f ∈ M∗

1 as follows. Let ξ be an arbitrary point on the unit
circle. We then define f on the primes p by

f(p) =

{
ξ if p ∈ B,
1 if p /∈ B.

One can prove that such functions f belong to H. Indeed, let f be such a
function and let b1, b2 ∈ N (B) be such that (b1, b2) = 1. Since the set of
those positive integers n of the form n = b1ν and for which b2µ− b1ν = 1
with (µν,B) = 1 is of positive density, we may therefore conclude that
f ∈ H.

Given three arithmetic functions fA, fB , fC belonging to the categories A, B,
C, respectively, consider the arithmetic function f(n) := fA(n) · fB(n) · fC(n).
One can easily prove that f ∈ H.

Conjecture 1. If f ∈ H, then f(n) = fA(n) ·fB(n) ·fC(n) for some functions
fA, fB , fC belonging to the categories A, B, C, respectively.

Conjecture 2. The set Hlog is the same as the set H.
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3. Characterisation of those functions belonging to K

Consider the following three categories of functions.

(A1) Those functions f of the form f(n) = d log n for some real number d.
Clearly, all these functions belong to K.

(B1) Let u ∈ A∗ be such that ku(n) ≡ 0 (mod 1) for some k ∈ N. One can
easily see that all such functions u belong to K.

(C1) Let B a set of primes such that
∑

p∈B 1/p < ∞. We construct a particular
function v ∈ A∗ as follows. Let ξ be an arbitrary point on the unit circle.
We then define v on the primes p by

v(p) =

{
ξ if p ∈ B,
0 (mod 1) if p /∈ B.

One can prove that such functions v belong to K.

Given any real number d and two arithmetic functions u and v belonging
respectively to the categories B1 and C1, consider the arithmetic function
f(n) := d log n+ u(n) + v(n). One can easily prove that f ∈ K.

Conjecture 3. If f ∈ K, then f(n) = d log n + u(n) + v(n) for some real
number d and some functions u and v belonging respectively to the categories
B1 and C1.
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