AN ESTIMATE OF THE REGULARITY INDEX OF FAT POINTS IN SOME CASES

Phan Van Thien and Tran Thi Viet Trinh
(Hue City, Viet Nam)

Communicated by Bui Minh Phong

(Received January 28, 2019; accepted March 3, 2019)

Abstract. We estimate the regularity index of a set of fat points $Z = m_1P_1 + \cdots + m_sP_s$ in three cases: all points P_1, \ldots, P_s are on two lines; Z consists at most five fat points; $Z = m_1P_1 + \cdots + P_{n+3}P_{n+3}$ is non-degenerate in \mathbb{P}^n.

1. Introduction

Let $\mathbb{P}^n := \mathbb{P}^n_K$ be a n-dimensional projective space over an algebraically closed field K and $R := K[X_0, \ldots, X_n]$ be the polynomial ring in $n+1$ variables X_0, \ldots, X_n with coefficients in K. Let $P_1, \ldots, P_s \in \mathbb{P}^n$ be distinct points and denote by $\wp_i \subset R$ the homogeneous prime ideal defining by the points P_i, $i = 1, \ldots, s$. Let m_1, \ldots, m_s be positive integers, it is well known that the ideal $I = \wp_1^{m_1} \cap \cdots \cap \wp_s^{m_s}$ consists all forms $f \in R$ vanishing at P_i with the multiplicity $\geq m_i$, $i = 1, \ldots, s$; we denote by Z the zero-scheme defined by I and call

$$Z := m_1P_1 + \cdots + m_sP_s$$

a set of fat points in \mathbb{P}^n. In case $m_1 = \cdots = m_s = m$ the Z is called a set of equimultiple fat points.

Key words and phrases: Fat points, regularity index, Zero-scheme.

2010 Mathematics Subject Classification: Primary 14C20, Secondary 13D40.
The homogeneous coordinate ring of Z is $A := R/I$. This is a graded ring, $A = \bigoplus_{t \geq 0} A_t$. For every $t \in \mathbb{N}$, the graded part A_t is a finite dimensional K-vector space. Then the function

$$H_Z(t) := \dim_K A_t$$

is called the Hilbert function of Z. This function allows us to estimate the size of all forms of degree t vanishing at every point P_i with multiplicity $\geq m_i$. In fact, our knowledge about $H_Z(t)$ is now very thin.

It is also well known that the number $e(A) = \sum_{i=1}^{s} (m_i + n - 1)$ is the multiplicity of the ring A and the Hilbert function $H_Z(t)$ strictly increases until it reaches the multiplicity $e(A)$, at which it stabilizes. The regularity index of Z is defined to be

$$\text{reg} (Z) := \min \{ t \in \mathbb{N} \mid H_A(t) = e(A) \}.$$

So the vector space dimension of the degree t polynomials in I is known if $t \geq \text{reg} (Z)$. In geometric language, the set of fat points Z imposes independent conditions on forms of degree at least to be $\text{reg} (Z)$. In fact, the calculation $\text{reg} (Z)$ is very difficult. So, instead of finding $\text{reg} (Z)$, one gave upper bounds for the $\text{reg} (Z)$. We can find different upper bounds for $\text{reg} (Z)$ in [1], [2], [4], [6], [7].

For a set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^n, we put

$$T_{jZ} = \max \left\{ \left\lfloor \frac{\sum_{l=1}^{q} m_i + j - 2}{j} \right\rfloor \mid P_{i_1}, \ldots, P_{i_q} \text{ lie on a linear } j\text{-space} \right\}$$

and

$$T_Z = \max \{ T_{jZ} \mid j = 1, \ldots, n \}.$$

A set of points $X = \{P_1, \ldots, P_s\}$ in \mathbb{P}^n is called a non-degenerate set if X does not lie on a hyperplane of \mathbb{P}^n. A set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ is called to be non-degenerate if $X = \{P_1, \ldots, P_s\}$ is non-degenerate. In 2016, E. Ballico, O. Dumitrescu and E. Postinghel [1, Theorem 2.1] proved

$$\text{reg} (Z) \leq T_Z$$

for $Z = m_1 P_1 + \cdots + m_{n+3} P_{n+3}$ is a set of non-degenerate fat points in \mathbb{P}^n. Recently, U. Nagel and B. Trok [5, Theorem 5.3] proved the above upper bound to be true for any set of fat points in \mathbb{P}^n.

Recall that the calculation of $\text{reg} (Z)$ is very difficult. There were a few results on the calculation of $\text{reg} (Z)$ which were published by prestigious journals as follows.
In 1984, E.D. Davis and A.V. Geramita [3, Corollary 2.3] successfully calculated the regularity of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in the case all points lie on a line in \mathbb{P}^n:

$$\text{reg}(Z) = m_1 + \cdots + m_s - 1.$$

A set of points $\{P_1, \ldots, P_s\}$ in \mathbb{P}^n is said in general position if no $j + 2$ points of $\{P_1, \ldots, P_s\}$ lie on a j-plane for every $j < n$. A set of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ is called in general position in \mathbb{P}^n if the points P_1, \ldots, P_s are in general position. A rational normal curve in \mathbb{P}^n is a curve of degree n that may be given parametrically as the image of the map

$$\mathbb{P}^1 \to \mathbb{P}^n$$

$$(s, t) \mapsto (s^n, s^{n-1} t, s^{n-2} t^2, \ldots, t^n).$$

In 1993, M.V. Catalisano, N.V. Trung and G. Valla [2] showed a formula to compute the regularity index of fat points $Z = m_1 P_1 + \cdots + m_s P_s$ in \mathbb{P}^n, with $m_1 \geq \cdots \geq m_s$, in two following cases:

- If $s \geq 2$ and the points P_1, \ldots, P_s lie on a rational normal curve [2, Proposition 7], then

$$\text{reg}(Z) = \max \left\{ m_1 + m_2 - 1, \left[\frac{\sum_{i=1}^{s} m_i + n - 2}{n} \right] \right\}.$$

- If $n \geq 3$, $2 \leq s \leq n + 2$, $2 \leq m_1$ and P_1, \ldots, P_s are in general position in \mathbb{P}^n [2, Corollary 8], then

$$\text{reg}(Z) = m_1 + m_2 - 1.$$

It is well known that if P_1, \ldots, P_s lie on a rational normal curve in \mathbb{P}^n, then they are in general position in \mathbb{P}^n. In above cases we have $T_{1Z} = m_1 + m_2 - 1 \geq T_{jZ}$ for $j = 2, \ldots, n - 1$, and thus $T_Z = \max\{T_{1Z}, T_{nZ}\}$.

In 2012, P.V. Thien [8, Theorem 3.4] showed

$$\text{reg}(Z) = T_Z$$

in the case the points P_1, \ldots, P_s are not on a linear $(s - 3)$-space in \mathbb{P}^n. In 2017, P.V. Thien and T.N. Sinh [10, Theorem 4.6] showed

$$\text{reg}(Z) = T_Z$$

in the case the points P_1, \ldots, P_s are not on a linear $(r - 1)$-space in \mathbb{P}^n, $s \leq r + 3$, and $m_1 = \cdots = m_s = m \neq 2$. The conjecture $\text{reg}(Z) = T_Z$ for a set of arbitrary
fat points Z in \mathbb{P}^n is false because U. Nagel and B. Trok [5, Example 5.7] showed: if $Z = mP_1 + \cdots + mP_s$ is a set of fat points in \mathbb{P}^n, where $X = \{P_1, \ldots, P_s\}$ consisting of five arbitrary points and $\binom{d+n}{d}$ generic points for some $d \geq 5$, then
\[\text{reg} (Z) < T_Z \]
for sufficiently large d (or n).

In this paper we prove that
\[T_Z - 1 \leq \text{reg} (Z) \leq T_Z \]
in the following cases:

- All P_1, \ldots, P_s are on two lines.
- The scheme Z consists at most five fat points.
- $Z = m_1P_1 + \cdots + m_sP_s$ is a set of non-degenerate fat points in \mathbb{P}^n.

2. Preliminaries

It is well known that if \mathbb{R}/I is the coordinate ring of a set of fat points Z, then the regularity index $\text{reg} (Z)$ is equal to the Castelnuovo–Mumford regularity index $\text{reg} (\mathbb{R}/I)$.

We need use the following results for the next section.

Lemma 2.1. ([9, Proposition 6]) Let P_1, \ldots, P_s be distinct points in \mathbb{P}^n and m_1, \ldots, m_s be positive integers. Let n_1, \ldots, n_s be non-negative integers with $(n_1, \ldots, n_s) \neq (0, \ldots, 0)$ and $m_i \geq n_i$ for $i = 1, \ldots, s$. Put $I = \mathbb{P}^{m_1} \cap \cdots \cap \mathbb{P}^{m_s}$ and $J = \mathbb{P}^{n_1} \cap \cdots \cap \mathbb{P}^{n_s}$ ($\mathbb{P}^{n_i} = \mathbb{R}$ if $n_i = 0$). Then
\[\text{reg} (\mathbb{R}/J) \leq \text{reg} (\mathbb{R}/I). \]

So, if $Y = n_1P_1 + \cdots + n_sP_s$ and $Z = m_1P_1 + \cdots + m_sP_s$, then ([5, Lemma 3.1(b)])
\[\text{reg} (Y) \leq \text{reg} (Z). \]

In 2000, P.V. Thien proved the following result.
Lemma 2.2. ([7, Theorem 1]) Let \(Z = m_1 P_1 + \cdots + m_s P_s \) be an arbitrary set of fat points in \(\mathbb{P}^3 \). Then

\[
\text{reg}(Z) \leq \max\{T_{1Z}, T_{3Z}, T_{3Z}\}.
\]

Consider a set of fat points \(Z \) in \(\mathbb{P}^n \). In 2012, B. Benedetti, G. Fatabbi and A. Lorenzini showed the following property when the support of \(Z \) is contained in a linear subspace of \(\mathbb{P}^n \).

Lemma 2.3. ([1, Theorem 2.1]) Let \(Z = m_1 P_1 + \cdots + m_s P_s \) be a set of fat points in \(\mathbb{P}^n \) such that \(\{P_1, \ldots, P_s\} \) is contained in a linear \(r \)-space \(\alpha \). We may consider the linear \(r \)-space \(\alpha \) as a \(r \)-dimensional projective space \(\mathbb{P}^r \) containing the points \(P'_1 := P_1, \ldots, P'_s := P_s \), and \(Z_\alpha = m_1 P'_1 + \cdots + m_s P'_s \) as a set of fat points in \(\mathbb{P}^r \). If there is a non-negative integer \(t \) such that \(\text{reg}(Z_\alpha) \leq t \) in \(\mathbb{P}^r \), then

\[
\text{reg}(Z) \leq t
\]
in \(\mathbb{P}^n \).

Recall that a set of fat points \(Z = m_1 P_1 + \cdots + m_s P_s \) in \(\mathbb{P}^n \) is called non-degenerate if all the points \(P_1, \ldots, P_s \) are not on a linear \((n-1) \)-space of \(\mathbb{P}^n \). In 2016, E. Ballico, O. Dumitrescu and E. Postinghel [1, Theorem 2.1] proved the following result.

Lemma 2.4. ([1, Theorem 2.1]) Let \(Z = m_1 P_1 + \cdots + m_{n+3} P_{n+3} \) be a set of non-degenerate fat points in \(\mathbb{P}^n \). Then

\[
\text{reg}(Z) \leq T_Z.
\]

The following result of E.D. Davis and A.V. Geramita help us to compute the regularity index of fat points with support on a line.

Lemma 2.5. ([3, Corollary 2.3]) Let \(Z = m_1 P_1 + \cdots + m_s P_s \) be a set of arbitrary fat points in \(\mathbb{P}^n \). Then

\[
\text{reg}(Z) = m_1 + \cdots + m_s - 1
\]
if and only if the points \(P_1, \ldots, P_s \) lie on a line.

The points \(P_1, \ldots, P_s \in \mathbb{P}^n \) is called to be in \(\text{Rnc}_j \) (see [9]) if there is a rational normal curve \(C \) in \(\mathbb{P}^j \) and a monomorphism \(\varphi : \mathbb{P}^j \to \mathbb{P}^n \) such that \(P_1, \ldots, P_s \) are on the image \(\varphi(C) \). In 2016, P.V. Thien proved:

Lemma 2.6. ([9, Proposition 10]) Let \(Z = m_1 P_1 + \cdots + m_s P_s \) be a set of fat points in \(\mathbb{P}^n \) such that \(P_1, \ldots, P_s \) are in \(\text{Rnc}_j \). Then

\[
\text{reg}(Z) = \max\{D_j \mid j = 1, \ldots, t\},
\]
where

\[
D_j = \max\left\{\left\lfloor \frac{\sum_{i=1}^q m_i + j - 2}{j} \right\rfloor \mid P_{i_1}, \ldots, P_{i_q} \text{ are in } \text{Rnc}_j \right\}.
\]
3. Results

Let \(X = \{P_1, \ldots, P_s\} \) be a set of distinct points in \(\mathbb{P}^n \), \(Z = m_1P_1 + \cdots + m_sP_s \) be a set of fat points in \(\mathbb{P}^n \) and \(L \) be a linear space in \(\mathbb{P}^n \). Assume that \(L \cap X = \{P_{i_1}, \ldots, P_{i_r}\} \), we put

\[
s(L \cap Z) := m_{i_1}P_{i_1} + \cdots + m_{i_r}P_{i_r},
\]

and

\[
w(s(L \cap Z)) := m_{i_1} + \cdots + m_{i_r}.
\]

From the Lemma 2.1 we get:

Remark 3.1. If \(Z = m_1P_1 + \cdots + m_sP_s \) is a set of fat points in \(\mathbb{P}^n \) and \(L \) is a linear space in \(\mathbb{P}^n \), then

\[
\text{reg} \ (s(L \cap Z)) \leq \text{reg} \ (Z).
\]

By using the above results we get:

Lemma 3.2. If \(Z = m_1P_1 + \cdots + m_sP_s \) is a set of fat points in \(\mathbb{P}^n \), then

\[
\text{reg} \ (Z) \geq T_1Z.
\]

Proof. By the definition of \(T_1Z \), there is a linear 1-space \(l \) in \(\mathbb{P}^n \) such that

\[
T_1Z = w_s(l \cap Z) - 1.
\]

By Remark 3.1 and Lemma 2.5, we have

\[
\text{reg} \ (Z) \geq \text{reg} \ (s(l \cap Z)) = w_s(l \cap Z) - 1.
\]

Therefore

\[
\text{reg} \ (Z) \geq T_1Z.
\]

Lemma 3.3. If \(Z = m_1P_1 + \cdots + m_sP_s \) is a set of fat points in \(\mathbb{P}^n \) such that \(P_1, \ldots, P_s \) are on a linear 3-space, then

\[
\text{reg} \ (Z) \leq \max\{T_1Z, T_2Z, T_3Z\} = T_Z.
\]

Proof. Assume that \(P_1, \ldots, P_s \) are on a linear 3-space, say \(\alpha \). Put \(P'_1 := P_1, \ldots, P'_s := P_s \) and consider \(Z_\alpha := m_1P'_1 + \cdots + m_sP'_s \) as a set of fat points in \(\mathbb{P}^3 \cong \alpha \). By the Lemma 2.2 we get

\[
\text{reg} \ (Z_\alpha) \leq \max\{T_{1Z_\alpha}, T_{2Z_\alpha}, T_{3Z_\alpha}\}.
\]
By using Lemma 2.3 we get
\[\text{reg} (Z) \leq \max \{ T_{1Z}, T_{2Z}, T_{3Z} \}. \]

It is easy to see that
\[T_j Z = T_j Z_\alpha \]
for \(j = 1, 2, 3 \). So
\[\text{reg} (Z) \leq \max \{ T_{1Z}, T_{2Z}, T_{3Z} \}. \]

Since all \(P_1, \ldots, P_s \) are on a linear 3-space, we get \(T_{3Z} \geq T_j Z \) for \(j = 4, \ldots, n \).

We thus get
\[\max \{ T_{1Z}, T_{2Z}, T_{3Z} \} = T_{\alpha}. \]

We now can estimate the regularity index of a set of fat points with support on two lines.

Theorem 3.4. Let \(Z = m_1 P_1 + \cdots + m_s P_s \) be a set of fat points in \(\mathbb{P}^n \) such that all \(P_1, \ldots, P_s \) are on two lines of \(\mathbb{P}^n \). Then
\[T_{Z} - 1 \leq \text{reg} (Z) \leq T_{Z}. \]

Proof. Assume that the points \(P_1, \ldots, P_s \) are on two lines, say \(l_1 \) and \(l_2 \), in \(\mathbb{P}^n \). Then \(l_1 \cup l_2 \) is on a linear 3-space in \(\mathbb{P}^n \). We consider two following cases:

Case 1: \(l_1 \cup l_2 \) does not lie on any linear 2-space in \(\mathbb{P}^n \). We consider two following cases.

Case 1.a: \(w_{s(l_1 \cap Z)} \neq w_{s(l_2 \cap Z)} \). Without loss of generality we can assume that \(w_{s(l_1 \cap Z)} > m_s(l_1 \cap Z) \), then
\[w_{s(l_1 \cap Z)} - 1 \geq \left\lfloor \frac{w_{s(l_1 \cap Z)} - w_{s(l_2 \cap Z)}}{2} \right\rfloor \geq \left\lfloor \frac{m_1 + \cdots + m_s}{2} \right\rfloor \geq \max \{ T_{2Z}, T_{3Z} \}. \]

By the definition of \(T_{1Z} \), we have \(T_{1Z} \geq w_{s(l_1 \cap Z)} - 1 \). It follows that
\[T_{1Z} = \max \{ T_{1Z}, T_{2Z}, T_{3Z} \}. \]

Moreover, since \(P_1, \ldots, P_s \) are on a linear 3-space, from Lemma 3.2 and Lemma 3.3 we get in **Case 1.a:**
\[\text{reg} (Z) = T_{1Z} = T_{Z}. \]

Case 1.b: \(w_{s(l_1 \cap Z)} = w_{s(l_2 \cap Z)} \). Then
\[w_{s(l_1 \cap Z)} - 1 = \left\lfloor \frac{w_{s(l_1 \cap Z)} + w_{s(l_2 \cap Z)} - 1}{2} \right\rfloor. \]
Since $l_1 \cup l_2$ does not lie on a linear 2-space and lie on a linear 3-space, we have

$$\left\lfloor \frac{w_s(l_1 \cap Z) + w_s(l_2 \cap Z) - 1}{2} \right\rfloor \geq T_{2Z},$$

and

$$\left\lfloor \frac{w_s(l_1 \cap Z) + w_s(l_2 \cap Z) - 1}{2} \right\rfloor \geq \left\lfloor \frac{w_s(l_1 \cap Z) + w_s(l_2 \cap Z) + 1}{3} \right\rfloor = T_{3Z}.$$

Therefore,

$$w_s(l_1 \cap Z) - 1 \geq \max\{T_{2Z}, T_{3Z}\}.$$

But $T_{1Z} \geq w_s(l_1 \cap Z) - 1$, it follows that

$$T_{1Z} = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.$$

Moreover, from Lemma 3.2 and Lemma 3.3 we get in Case 1.b:

$$\text{reg}(Z) = T_{1Z} = T_Z.$$

Case 2: $l_1 \cup l_2$ lie on a linear 2-space, say $\beta \subset \mathbb{P}^n$. Then $T_{2Z} \geq T_{3Z}$, so $T_{2Z} = \max\{T_{2Z}, T_{3Z}\}$. We consider two following cases:

Case 2.a: $w_s(l_1 \cap Z) \neq w_s(l_2 \cap Z)$. Without loss of generality we can assume that $w_s(l_1 \cap Z) > m_s(l_2 \cap Z)$, then

$$w_s(l_1 \cap Z) - 1 \geq \left\lfloor \frac{w_s(l_1 \cap Z) + w_s(l_2 \cap Z)}{2} \right\rfloor \geq \left\lfloor \frac{m_1 + \cdots + m_s}{2} \right\rfloor = T_{2Z} = \max\{T_{2Z}, T_{3Z}\}.$$

But $T_{1Z} \geq w_s(l_1 \cap Z) - 1$. Hence

$$T_{1Z} = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.$$

Moreover, from Lemma 3.2 and Lemma 3.3 we get in Case 2.a:

$$\text{reg}(Z) = T_{1Z} = T_Z.$$

Case 2.b: $w_s(l_1 \cap Z) = w_s(l_2 \cap Z)$. Then

$$w_s(l_1 \cap Z) = \left\lfloor \frac{w_s(l_1 \cap Z) + w_s(l_2 \cap Z)}{2} \right\rfloor \geq T_{2Z}.$$

By defining of T_{1Z}, we have $w_s(l_1 \cap Z) - 1 \leq T_{1Z}$.

If either \(w_s(l_i \cap Z) - 1 < T_{1Z} \) or \(w_s(l_i \cap Z) = T_{1Z} \) and \(l_1 \cap l_2 \cap \{P_1, \ldots, P_s\} \neq \emptyset \), then \(T_{1Z} \geq T_{2Z} = \max\{T_{2Z}, T_{3Z}\} \). So

\[
T_{1Z} = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.
\]

Moreover, from Lemma 3.2 and Lemma 3.3 we get

\[
\text{reg}(Z) = T_{1Z} = T_{2Z}.
\]

If \(w_s(l_i \cap Z) = T_{1Z} \) and \(l_1 \cap l_2 \cap \{P_1, \ldots, P_s\} = \emptyset \), then

\[
T_{2Z} = T_{1Z} + 1 = \max\{T_{1Z}, T_{2Z}, T_{3Z}\}.
\]

Moreover, from Lemma 3.2 and Lemma 3.3 we get

\[
T_{Z} - 1 = T_{1Z} \leq \text{reg}(Z) \leq T_{2Z} = T_{Z}.
\]

Hence in Case 2.b we get

\[
T_{Z} - 1 \leq \text{reg}(Z) \leq T_{Z}.
\]

The proof of Theorem 3.4 is completed. ■

Next we also can estimate the regularity index of a set consisting at most five fat points.

Proposition 3.5. Let \(Z = m_1 P_1 + \cdots + m_s P_s \) be a set of fat points in \(\mathbb{P}^n \), \(s \leq 5 \). Then

\[
T_{Z} - 1 \leq \text{reg}(Z) \leq T_{Z}.
\]

Proof. If \(P_1, \ldots, P_s \) lie on two lines, then by the above theorem we get

\[
T_{Z} - 1 \leq \text{reg}(Z) \leq T_{Z}.
\]

If \(P_1, \ldots, P_s \) do not lie on two lines, then \(s = 5 \) and there are two following cases for \(P_1, \ldots, P_5 \):

Case 1: All \(P_1, \ldots, P_5 \) lie on a linear 2-space in \(\mathbb{P}^n \). Then \(P_1, \ldots, P_5 \) are in \(Rn=2 \) because \(P_1, \ldots, P_5 \) are not on two lines. By Lemma 2.6 we have

\[
\text{reg}(Z) = \max\{D_1, D_2\}.
\]

Since \(D_1 = T_{1Z} \) and \(D_2 = T_{2Z} \geq T_{jZ} \) for \(j = 3, \ldots, n \), we get

\[
\text{reg}(Z) = T_{Z}.
\]
Case 2: P_1, \ldots, P_5 do not lie on a linear 2-space in \mathbb{P}^n. Then by [8, Theorem 3.4] we get

$$\text{reg}(Z) = T_Z.$$ \hfill ■

For $Z = m_1P_1 + \cdots + m_{n+3}P_{n+3}$ is a set of non-degenerate fat points in \mathbb{P}^n, E. Ballico, O. Dumitrescu and E. Postinghel [1] proved $\text{reg}(Z) \leq T_Z$. We now prove that $\text{reg}(Z)$ is bounded lowerly by $T_Z - 1$.

Theorem 3.6. Let $Z = m_1P_1 + \cdots + m_{n+3}P_{n+3}$ be a set of non-degenerate fat points in \mathbb{P}^n. Then

$$T_Z - 1 \leq \text{reg}(Z) \leq T_Z.$$

Proof. Without loss of generality, we can assume that $m_1 \geq m_2 \geq \cdots \geq m_{n+3}$. By Lemma 2.4 we have

$$\text{reg}(Z) \leq T_Z$$

with

$$T_Z = \max\{T_{jZ} \mid j = 1, \ldots, n\}$$

and

$$T_{jZ} = \max\left\{\left\lfloor \frac{\sum_{l=1}^{q} m_{i_l} + j - 2}{j} \right\rfloor \mid P_{i_1}, \ldots, P_{i_q} \text{ lie on a linear } j\text{-space}\right\}.$$

So, in the remainder we only need prove that $\text{reg}(Z) \geq T_Z - 1$.

Since P_1, \ldots, P_{n+3} are in non-degenerate in \mathbb{P}^n, there are at most $j + 3$ points of them are on a linear j-space for $j = 1, \ldots, n - 1$. This implies

$$m_1 + m_2 \geq T_{jZ}$$

for $j = 3, \ldots, n$. So

$$T_Z = \max\{T_{1Z}, T_{2Z}\}.$$

We consider two following cases:

Case 1: $T_{2Z} \leq T_{1Z}$. Then $T_Z = T_{1Z}$, by Lemma 3.2 we get

$$\text{reg}(Z) \geq T_{1Z} = T_Z.$$

Case 2: $T_{2Z} > T_{1Z}$. Since P_1 and P_2 are on a line, we have $T_{1Z} \geq m_1 + m_2 - 1$ by defining of T_{1Z}. So, $T_{2Z} \geq m_1 + m_2$. On the other hand, by defining of T_{2Z} there is a linear 2-space, say α, such that

$$T_{2Z} = \left\lfloor \frac{w_{\alpha}(\alpha \cap Z)}{2} \right\rfloor.$$
Suppose that $\alpha \cap Z = m_1P_{i_1} + \cdots + m_qP_{i_q}$, then

$$\left\lfloor \sum_{i=1}^{q} \frac{m_i}{2} \right\rfloor = \left\lfloor \frac{w_s(\alpha \cap Z)}{2} \right\rfloor \geq m_1 + m_2.$$

Since $m_1 \geq m_2 \geq m_3 \geq \cdots \geq m_{n+3}$, we have $q \geq 4$. We consider two following cases for q.

Case $q = 4$: Then $m_1 = m_2 = m_3 = m_4 = m$ and $T_{2Z} = 2m = T_Z = T_{1Z} + 1$. By Lemma 3.2 we get

$$\text{reg} (Z) \geq T_{1Z} = T_Z - 1.$$

Case $q \geq 5$: Since P_1, \ldots, P_{n+3} are in non-degenerate in \mathbb{P}^n, there are at most five points on the linear 2-space. Thus $q = 5$ because α is a linear 2-space. By using Proposition 3.5 we get

$$\text{reg} (Z) \geq T_Z - 1.$$

References

P.V. Thien and T.T.V. Trinh
Department of Mathematics
College of Education
Hue University
34 Le Loi, Hue City
Viet Nam
tphanvannl@yahoo.com
trinhtran221093@gmail.com