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Abstract. Henstock type integrals for Banach-space-valued functions on
zero-dimensional compact abelian group are introduced and used to re-
cover, by generalized Fourier formulae, the vector-valued coefficients of
series with respect to characters of such a group. The problem of conver-
gence of Fourier-Henstock series is also investigated.

1. Introduction

One of the aim of the present paper is to investigate whether some results
on series with respect to system of characters of zero-dimensional compact
abelian groups known in the scalar-valued case can be extended to the case of
Banach-space-valued coefficients. First of all we are interested in the problem
of recovering, by generalized Fourier formulae, the vector-valued coefficients of
such a series. We consider also the problem of convergence of Fourier series of
Banach-space-valued functions. The scalar-valued case was considered in [13].

During the last decades, the study in vector-valued Fourier analysis demon-
strates that in some cases classical results about scalar-valued functions remain
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true for any Banach space, some other results can be carried over only to the
finite-dimensional case and there are also cases in which the validity of a re-
sult depends on the structure and geometry of the Banach spaces involved.
A prominent example is the vector-valued extension of Carleson’s celebrated
theorem on point-wise convergence of Fourier series which is possible only in
the case of UMD (unconditionality of martingale differences) spaces and was
obtained a few years ago for a wide class of these spaces in the case of Fourier
series with respect to Walsh and trigonometric systems (see [5, 6]) and also
for Vilenkin system of bounded type (see [16]). Another example is the theory
involving type and cotype of Banach spaces.

All the situations mentioned above occurs in the case of problems considered
here for series with respect to system of characters. The result of [13] related
to the problem of recovering the coefficients in the scalar case is extended
here for any Banach space. But convergence of Fourier series in the sense of
some considered here integrals remains valid only in the finite-dimension case.
Moreover if we consider the rate of divergence of Fourier series for functions
with value in an infinite-dimensional space then it turns out to depend on the
structure of the space.

As it was in the scalar case, the problem of recovering the coefficients and
the problem of convergence can be reduced to the correspondent problems in
the theory of differentiation or integration of a certain functions associated with
the series. In particular a solution of the problem of recovering the coefficients
is obtained by reducing it to the one of recovering a primitive. In turn to
solve this problem some Henstock type generalizations of Bochner and Pettis
integrals are introduced and investigated.

Some of the results presented here are a generalization of those ones ob-
tained in [10] for the case of Walsh and Haar series.

In Section 2 we recall some definitions and facts from harmonic analysis
on zero-dimensional compact abelian group and from Banach space theory. In
Section 3 several Henstock type integrals for Banach-valued functions on the
group, needed to solve the problem of recovering coefficients, are introduced.
A differential properties of these integrals are considered in Section 4 and a re-
lated problem of recovering a primitive from its generalized derivative is solved.
One of the essential result of this section is Theorem 4.6. It states that for any
infinite-dimensional Banach space there exists a function integrable in the sense
of a Henstock type integral, introduced in the previous section, and the indefi-
nite integral of this function is nowhere differentiable in a respective sense. In
Section 5 a relation between convergence properties of a series with respect to
the system of characters of zero-dimensional compact abelian groups and differ-
ential properties of a certain function associated with the series is established
and in this way the problem of recovering, by generalized Fourier formulae,
the vector-valued coefficients of a convergent series is solved by reducing it to
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the problem of recovering primitives considered in the previous section. Some
results related to convergence of Fourier–Henstock series with respect to char-
acters are also obtained as corollaries of results of the previous section. In
particular it is proved for any infinite-dimensional Banach space that there ex-
ists a function with values in this space such that its Fourier–Henstock series
diverges everywhere. A rate of growth of the partial sums of such a divergent
series is also discussed.

2. Preliminaries

LetG be a zero-dimensional compact abelian group with second countability
axiom. It is known (see [1]) that a topology in such a group can be given by a
chain of subgroups

(2.1) G = G0 ⊃ G1 ⊃ G2 · · · ⊃ Gn ⊃ · · ·

with G =
⋃+∞

n=0 Gn and {0} =
⋂+∞

n=0 Gn. The subgroups Gn are clopen sets
with respect to this topology. As G is compact, the factor group G0/Gn and
also the factor groups Gn/Gn+1 for each n are finite. Let the order of the group
Gn/Gn+1 be pn. Then the order of the group G0/Gn is mn := p0 ·p1 · ... ·pn−1,
with pi ≥ 2 for all i (we agree that m0 := 1). We denote by Kn any coset
of the subgroup Gn and we numerate them so that Gn = K1

n and the rest of
them are Ki

n, i = 2, . . .mn. For any g ∈ G we denote by Kn(g) a coset of the
subgroup Gn which contains the element g, i.e.,

(2.2) Kn(g) = g +Gn.

For each g ∈ G the sequence {Kn(g)} is decreasing and {g} =
⋂

n Kn(g).

We denote by µ the normalized Haar measure on the group G. We can
make this measure to be complete by including all the subsets of the sets of
measure zero into the class of measurable sets.

Since µ(G0) = 1 and µ is translation invariant then

(2.3) µ(Gn) = µ(Kn) =
1

mn

for all cosets Kn, n ≥ 0. It is easy to see that µ is outer regular.

Let Γ denotes the dual group of G, i.e., the group of characters of the
group G. It is known (see [1]) that under assumption imposed on G the group
Γ is discrete abelian group (with respect to the pointwise multiplication of
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characters) and it can be represented as a sum of increasing chain of finite
subgroups

(2.4) Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γn ⊂ · · · ,

where Γ0 = {γ0} with γ0(g) = 1 for all g ∈ G. For each n ∈ N the group Γn is
the annulator of Gn, i.e.,

Γn := {γ ∈ Γ : γ(g) = 1 for all g ∈ Gn}.

The factor groups Γn+1/Γn and Gn/Gn+1 are isomorphic (see [1]) and so they
are of finite order pn for each n ∈ N.

It is easy to check that if γ ∈ Γn then γ is constant on each coset Kn of
Gn, and if γ ∈ Γ \ Γn then

∫
Kn

γdµ = 0 for each coset Kn (see [13]).

This implies that if γ1 and γ2 are not equal identically on Kn, then they
are orthogonal on Kn, i.e., ∫

Kn

γ1γ2dµ = 0.

So the characters γ constitute a countable orthogonal system on G with
respect to normalized measure µ and we can consider a series

(2.5)
∑
γ∈Γ

aγγ

with respect to this system. We define the convergence of this series at a point
g as the convergence of its partial sums

(2.6) Sn(g) :=
∑
γ∈Γn

aγγ(g)

when n tends to infinity.

If coefficients aγ are Banach-valued we can consider strong and weak con-
vergence of this series.

Now we recall some definitions and facts from Banach space theory (see,
for example, [2]).

A sequence {ek}∞k=1 in a Banach space X is called a basic sequence if it is
a basis for the closed linear span of {ek}∞k=1.

If {ek}∞k=1 is a basis for a Banach space X then the number K = supn ‖Sn‖,
where {Sn} are the natural projections associated with the bases, i.e.,

Sn

( ∞∑
i=1

akek

)
=

n∑
i=1

akek

is called the basis constant.
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The following statement is attributed to Mazur (see [2, Corollary 1.5.3]).

Proposition 2.1. Every infinite-dimensional Banach space contains for any
K > 1 a basic sequence with basis constant less than K.

If X and Y are two isomorphic Banach spaces, the Banach-Mazur distance
between X and Y is defined as

inf
{
‖T‖ ‖T−1‖ : T : X → Y is an isomorphism

}
.

Let X and Y be infinite-dimensional Banach spaces. We say that X is
finitely representable in Y if given any finite-dimensional subspace E of X and
C > 1 there is a finite-dimensional subspace F of Y with dimF = dimE, and
a linear isomorphism T : E → F , satisfying inf ‖T‖ ‖T−1‖ < C, that is, the
Banach–Mazur distance between E and F is less than C.

In these terms famous Dvoretzky’s Theorem can be formulated as follows:

Proposition 2.2. [2, Theorem 11.3.13]. The space l2 is finitely representable
in every infinite-dimensional Banach space.

We denote by X∗ the dual space of X, i. e., the space of bounded linear
functionals on X.

3. Henstock type generalization of Bochner and Pettis integrals on
the group G

We extend here to the Banach-space-valued case some definitions of gen-
eralized Henstock types (Kurzweil–Henstock types, to be exact) integrals on
the group which were considered in [13] for the scalar case. For definition of
the classical Kurzweil–Henstock integral on the real line for real-valued and for
Banach-space-valued functions see [7] and [9]. First we recall the construction
of the correspondent derivation basis.

For any function ν : G → N, called a gage, we define the set

βν := {(I, g) : g ∈ G, I = Kn(g), n ≥ ν(g)}.

Then our derivation basis B is the family {βν}ν where ν runs over the set of
all natural-valued functions on G. In the terminology of the derivation basis
theory each coset Kn, n ≥ 0, can be called B-interval of rank n. We denote by
I the family of all B-intervals.
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This basis has all the usual properties of a general derivation basis (see [8]).

First of all it has the filter base property: ∅ /∈ B and for every βν1
, βν2

∈
∈ B there exists βν ∈ B such that βν ⊂ βν1

∩ βν2
(it is enough to take ν =

= max{ν1, ν2}).
For a fixed gage ν a βν-partition is a finite collection π of elements of βν ,

where the distinct elements (I ′, g′) and (I ′′, g′′) in π have I ′ and I ′′ disjoint. If
L is a B-interval and

⋃
(I,g)∈π I = L then π is called βν-partition of L and if⋃

(I,g)∈π I ⊂ L then π is called βν-partition in L.

Basis B has the partitioning property. It means that the following conditions
hold: for each finite collection I0, I1, . . . , In of B-intervals with I1, . . . , In ⊂ I0
and Ii, i = 1, 2, . . ., being disjoint, the difference I0 \

⋃n
i=1 Ii can be expressed

as a finite union of pairwise disjoint B-intervals; for each B-interval L and for
any βν ∈ B there exists a βν-partition of L.

We write

βν(E) := {(I, g) ∈ βν : I ⊂ E} and βν [E] := {(I, g) ∈ βν : g ∈ E}.

Note that any two B-intervals I ′ and I ′′ are either disjoint or one of them
is contained in the other one and that, given a point g ∈ G, any βν-partition
contains only one pair (I, g) with this point g.

We say that a B-interval function F is B-continuous at a point g, with
respect to the basis B, if limn→∞ F (Kn(g)) = 0.

Now we define HB-integral with respect to the basis B.

Definition 3.1. Let X be a Banach space and L ∈ I. A function f : L → X
on L is said to be HB-integrable on L, with HB-integral A ∈ X, if for every
ε > 0, there exists a gage ν : L �→ N such that for any βν-partition π of L we
have:

(3.1)

∥∥∥∥
∑

(I,g)∈π

f(g)µ(I)−A

∥∥∥∥
X

< ε.

We denote the integral value A by (HB)
∫
L
f.

It is easy to check that if a function f isHB-integrable on a B-interval L then
it is also HB-integrable on any B-interval K ⊂ L. So the indefinite HB-integral
on L is defined and it can be easily proved that it is an additive B-interval
function on the set of all B-subintervals of L and is B-continuous at each point
of L. We can check also that HB-integral is invariant under translation given
by some element g ∈ G.

The fact that HB-integral is a generalization of the Bochner integral on G
can be checked similar to the case of integrals on an interval of the real line
(see [7] or [9]).



Series with respect to characters of zero-dimensional groups 385

An essential part of the theory of the Kurzweil-Henstock integral on an
interval of the real line is based on the so called Saks-Henstock Lemma (see [9,
Lemma 3.4.1]). The following generalization of this Lemma for the case of our
basis can be proved by similar arguments.

Lemma 3.1. If a function f : L → R is HB-integrable on L ∈ I and the
inequality (3.1) holds for any βν-partition π of L, where ν is chosen by ε > 0
according to Definition 3.1, then for any βν-partition π1 in L we have

∥∥∥∥
∑

(I,g)∈π1

(f(g)µ(I)−
∫

I

f)

∥∥∥∥≤ ε.

In the scalar-valued case a stronger statement known as Kolmogorov–Hen-
stock Lemma (see a version of it in [7, Lemma 3.9]) holds.

Lemma 3.2. If a function f : L → R on L ∈ I is HB-integrable on L with
F being its indefinite HB-integral, then for every ε > 0, there exists a gage
ν : L → N such that for any βν-partition π of L we have

∑
(I,g)∈π

∣∣∣f(g)µ(I)−
∫

I

f
∣∣∣ < ε.

The property, described in this lemma, gives in the scalar-valued case an
equivalent definition of the HB-integral. It is not so in the Banach-space-valued
case (see [12] where this problem is considered for integrals on the real line).

So if we accept the property from the lemma to hold, we get another version
of a Henstock type integral with respect to B, the so called variational Henstock
type integral. For the full interval basis on the real line such an integral was
defined in [12].

Definition 3.2. LetX be a Banach space and L ∈ I. A function f : L → X on
L is said to be V HB-integrable on L, with a given B-interval additive function
F : I → X as the indefinite V HB-integral, if for every ε > 0, there exists a
gage ν : L → N such that for any βν-partition π of L we have:

∑
(I,g)∈π

‖f(g)µ(I)− F (I)‖X < ε.

It is clear that each V HB-integrable function is also HB-integrable and the
integral values coincide.

It is easy to check that a function which is equal to zero almost everywhere
on L ∈ I, is HB-integrable (and also HB-integrable) on L with integral value
zero. This implies that HB-integrability of a function and the value of the
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HB-integral does not depend on values of the function on a set of measure
zero.

We consider also a Pettis type definition.

Definition 3.3. A function f : G → X is Henstock–Pettis integrable with
respect to basis B (or HPB-integrable) on G if x∗(f) is HB-integrable on each
I ∈ I, for each x∗ ∈ X∗ and there exists AI ∈ X such that

x∗(AI) = (HB)

∫

I

x∗(f)

for each x∗. AI is the value of the indefinite HPB integral on I and we write

AI = (HPB)

∫

I

f.

If we define a variational version of Henstock–Pettis integral then due to
Lemma 3.2 it would be equivalent to Henstock–Pettis integral.

4. Recovering the primitive and problem of differentiation

Let X be a Banach space and F be an X-valued B-interval function, i.e., a
function defined on I. The B-derivative of F at a point g is

DBF (g) := lim
n→∞

F (Kn(g))

µ(Kn(g))

if this limit exists.

We define also a weak derivative of F . Namely, we say that wDBF (t) ∈ X is
the weak B-derivative of F at g, with respect to the basis B, if for any x∗ ∈ X∗

lim
n→∞

x∗(F (Kn(g))

µ(Kn(g))
= x∗(wDBF (g)).

In this case we say that F is weakly B-differentiable at g.

Let F be an additive B-interval function and E an arbitrary subset of G.
For a fixed gage ν, we set

V ar(E,F, ν) := sup
π⊂βν [E]

∑
‖F (I)‖.
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We put also
VF (E) = V (E,F,B) := inf

ν
Var(E ,F , ν).

The extended real-valued set function VF (·) is called variational measure gen-
erated by F , with respect to the basis B. Following the proof given in [15] for
the interval bases in R it is possible to show that VF (·) is an outer measure.

First we prove the following proposition.

Proposition 4.1. Let an additive function F : I → X be B-differentiable on
G outside a set E such that VF (E) = 0. Then the function

f(x) :=

{
DBF (x ) if it exists,
0 if x ∈ E

is V HB-integrable on G and F is its indefinite V HB-integral.

Proof. Fix ε > 0 and according to definition of variational measure find
ν : E → X such that for any βν [E]-partition π1 we have

∑
π1

‖F (I)‖ < ε
2 . For

each point g where F is B-differentiable find ν(g) such that

∥∥F (Kn(g))− f(g)µ(Kn(g))
∥∥ <

ε

2
µ(Kn(g))

if n ≥ ν(g). In this way a gage ν is defined at each point of G. Then for any
βν-partition π of G we have we get

∑
(I,g)∈π

∥∥F (Kn(g))− f(g)µ(Kn(g))
∥∥ ≤

∑
(I,g)∈π, g/∈E

‖f(g)µ(I)− F (I)‖+

+
∑

(I,g)∈π, g∈E

‖f(t)µ(I)− F (I)‖ ≤ ε

2

∑
(I,g)∈π, g/∈E

µ(I) +
ε

2
≤ ε.

Thus F is indefinite V HB-integral of f . In particular

F (G) = (V HB)

∫

G

f. �

We formulate also a weak version of the above proposition:

Proposition 4.2. Let an additive function F : I → X be wB-differentiable on
G outside a set E such that Vx∗F (E) = 0 for any x∗ ∈ X∗. Then the function

f(x) :=

{
wDBF (x ) if it exists,
0 if x ∈ E

is HPB-integrable on G and F is its indefinite HPB-integral.
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We get the next two theorems as corollaries of the above propositions.

Theorem 4.3. Let an additive function F : I → X be B-differentiable every-
where on G outside of a set E with µ(E) = 0, and

(4.1) limn→∞
‖F (Kn(g))‖
µ(Kn(g))

< ∞

everywhere on E except on a countable set M where F is B-continuous. Then
the function

f(x) :=

{
DBF (x ) if it exists,
0 if x ∈ E

is V HB-integrable on G and F is its indefinite V HB-integral.

Proof. To apply Proposition 4.1 we need to prove only that VF (E) = 0.

We note first that B-continuity of F at each point of M and the fact that
VF (·) is an outer measure imply VF (M) = 0. Now let

H := E \M =
⋃
m∈N

Hm

where

Hm :=

{
ξ ∈ E \M : lim

‖F (Kn(g))‖
µ(Kn(g))

< m

}
.

As µ(Hm) = 0 and the measure µ is outer regular, there exists, for any ε > 0,
an open set Om ⊃ Hm such that µ(Om) < ε

m . Then for any g ∈ Hm there
exists ν(g) ∈ N such that for any n ≥ ν(g) we have

(4.2) Kn(g) ⊂ Om, and ‖F (Kn(g))‖ ≤ mµ(Kn(g)).

By this we have defined a gage ν on Hm for each m. Now taking any βν [Hm]-
partition π and using (4.2) we compute:

∑
(I,x)∈π

‖F (I)‖ ≤ m
∑

(I,x)∈π

µ(I) ≤ mµ(Om) ≤ m · ε

m
= ε.

Since ε is arbitrary we get VF (Hm) = 0. Then, once again using the property
of an outer measure we obtain

VF (E) ≤ VF (M) +
∑
m

VF (Hm) = 0. �

In the weak version of the previous theorem we need not use variational
type integral by the reason mentioned in the previous section.
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Theorem 4.4. Let an additive function F : I → X be weakly B-differentiable
everywhere on G outside of a set E with µ(E) = 0, and for any x∗ ∈ X∗

limn→∞
‖x∗F (Kn(g))‖

µ(Kn(g))
< ∞

everywhere on E except on a countable set M where F is B-continuous. Then
the function

f(x) :=

{
wDBF (x ) if it exists,
0 if x ∈ E

is HPB-integrable on G and F is its indefinite HPB-integral.

It was proved in [13] that in the scalar-valued case the indefinite HB-
integral of any HB-integrable function is B-differentiable everywhere on G and
DBF (g) = f(g) almost everywhere. In a similar way this property can be
proved in a case when a the range of a function is of finite dimension. Al-
though, as we show below, this property of differentiability fails to be true for
any infinite-dimensional Banach space, it is still true for V HB-integral in the
case of any Banach space:

Theorem 4.5. If a function f : G → X is V HB-integrable on G then the
indefinite V HB-integral F (K) = (V H)B

∫
K
f as an additive function on the

set of all B-intervals is B-differentiable almost everywhere on G and

(4.3) DBF (g) = f(g) a.e. on L.

Proof. The proof follows the lines of the proof in [13, Theorem 3.1] where a
reference to Kolmogorov–Henstock lemma should be replaced with a reference
to the inequality from Definition 3.2. �

The next theorem shows that this result can not be extended to the case of
HB-integral.

Theorem 4.6. For any infinite-dimensional Banach space X, there exists a
HB-integrable on G function f : G → X with the indefinite HB-integral which
is B-differentiable nowhere on G.

Proof. We use some elements of construction in [4] and some ideas from [9].
First we define inductively a collection {An

k : n = 0, 1, . . . ; k = 1, . . . ,mn} of
disjoint nowhere dense sets of strictly positive measure such that An

k ⊂ Kk
n.

By Proposition 2.1 there is a basic sequence {xn} in X with basis constant
B ≥ 1. Take a blocking Fn of the basis with each subspace Fn of large enough
dimension to find by Proposition 2.2 a mn-dimensional subspace En of Fn such
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that the Banach–Mazur distance between En and lmn
2 is less than 2. Next

find operators Tn : lmn
2 → En such that ‖Tn‖ ≤ 2 and ‖T−1

n ‖ = 1. Let
un
k : k = 1, . . . ,mn be the standard unit vectors of lmn

2 and let enk = Tnu
n
k .

Define a function f : G → X by

f(g) =
∞∑
j=1

m
− 3

4
j

mj∑
k=1

χAj
k
(g)

µ(Aj
k)

ejk.

The series here is obviously convergent as at each point g not more than one
term is not equal to zero. We consider partial sums of this series:

fn(g) =

n∑
j=1

m
− 3

4
j

mj∑
k=1

χAj
k
(g)

µ(Aj
k)

ejk.

This simple functions are Bochner integrable and so are also HB-integrable
with HB-integral ∫

G

fn(g) =
n∑

j=1

m
− 3

4
j

mj∑
k=1

ejk.

For a given ε > 0 and for any n we can find νn such that for any βνn
-partition

πn of G we have

(4.4)

∥∥∥∥∥
∑

(I,g)∈πn

fn(g)µ(I)−
∫

G

fn

∥∥∥∥∥ < ε2−(n+2).

The series
∞∑
j=1

m
− 3

4
j

mj∑
k=1

ejk

is convergent to some element A ∈ X because
∥∥∥∥∥
mn∑
k=1

enk

∥∥∥∥∥
X

≤
∥∥Tn

∥∥ ·

∥∥∥∥∥
mn∑
k=1

un
k

∥∥∥∥∥
l2

≤ 2m
1
2
n .

So for the chosen ε we can find N such that for any n ≥ N

(4.5)

∥∥∥∥∥∥
∞∑
j=n

m
− 3

4
j

mj∑
k=1

ejk

∥∥∥∥∥∥
≤ 2

∞∑
j=n

m
− 1

4
j <

ε

4
.

Hence for n ≥ N

(4.6)

∥∥∥∥∥
∫

G

fn −A

∥∥∥∥∥ <
ε

4
.
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We define the following sequence of sets. We put

EN =
N⋃

n=1

mn⋃
k=1

An
k ∪ (G \

∞⋃
n=1

mn⋃
k=1

An
k )

and

En =

mn⋃
k=1

An
k for n > N.

Note that G = EN

⋃
(
⋃

n>N En).

To prove that f is HmathcalB-integrable with the integral value A we define
a gage ν corresponding to the given ε. We put

ν(g) = max{ν1(g), . . . , νN (g)} if g ∈ EN ,

ν(g) = max{ν1(g), . . . , νn(g)} if g ∈ En, n > N.

Let {(gi, Ii)}pi=1 be a fixed βν-partition of G and let n0 = maxi{n : gi ∈ En, n ≥
≥ N}. Note that if g ∈ En then f(g) = fn(g). So f(gi) = fn0(gi) for any i.
We get

p∑
i=1

∥∥f(gi)µ(Ii)−A
∥∥≤

p∑
i=1

∥∥∥∥fn0(gi)µ(Ii)−
∫

G

fn0

∥∥∥∥+

∥∥∥∥
∫

G

fn0 −A

∥∥∥∥.

By (4.6)

(4.7)

∥∥∥∥
∫

G

fn0
−A

∥∥∥∥<
ε

4
.

We have
∥∥∥∥∥

p∑
i=1

fn0(gi)µ(Ii)−
∫

G

fn0

∥∥∥∥∥ ≤

∥∥∥∥∥
n0∑

j=N

∑
i:gi∈Ej

(
fn0(gi)µ(Ii)−

∫

Ii

fn0

)∥∥∥∥∥ =

=

∥∥∥∥∥
n0∑

j=N

∑
i:gi∈Ej

(
fj(gi)µ(Ii)−

∫

Ii

fj

)∥∥∥∥∥+
∥∥∥∥∥
n0−1∑
j=N

∑
i:gi∈Ej

(∫

Ii

fj −
∫

Ii

fn0

)∥∥∥∥∥.

Using (4.4) and Lemma 3.1 we estimate

(4.8)

∥∥∥∥∥
n0∑

j=N

∑
i:gi∈Ej

(
fj(gi)µ(Ii)−

∫

Ii

fj

)∥∥∥∥∥≤
ε

2N+1
<

ε

4
.
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Note that if i is such that gi ∈ Ej then

∫

Ii

(fn0 − fj) =

n0∑
k=j+1

m
− 3

4

k

mk∑
s=1

µ(Ak
s ∩ Ii)

µ(Ak
s)

eks .

Therefore,
∥∥∥∥∥
n0−1∑
j=N

∑
i:gi∈Ej

(∫

Ii

fn0
−

∫

Ii

fj

)∥∥∥∥∥=
∥∥∥∥∥
n0−1∑
j=N

∑
i:gi∈Ej

n0∑
k=j+1

m
− 3

4

k

mk∑
s=1

µ(Ak
s ∩ Ii)

µ(Ak
s)

eks

∥∥∥∥∥ ≤

≤
n0∑

k=N+1

m
− 3

4

k

∥∥∥∥∥
mk∑
s=1

k−1∑
j=N+1

∑
i:gi∈Ej

µ(Ak
s ∩ Ii)

µ(Ak
s)

eks

∥∥∥∥∥ ≤

≤
n0∑

k=N+1

2m
− 3

4

k

∥∥∥∥∥
mk∑
s=1

k−1∑
j=N+1

∑
i:gi∈Ej

µ(Ak
s ∩ Ii)

µ(Ak
s)

uk
s

∥∥∥∥∥
l2

.

It is clear that ∥∥∥∥∥
mk∑
s=1

k−1∑
j=N+1

∑
i:gi∈Ej

µ(Ak
s ∩ Ii)

µ(Ak
s)

uk
s

∥∥∥∥∥ ≤ m
1
2

k .

So by (4.5)

(4.9)

∥∥∥∥∥
n0−1∑
j=N

∑
i:gi∈Ej

(∫

Ii

fn0 −
∫

Ii

fj

)∥∥∥∥∥ ≤ ε

2
.

Summing up the estimates (4.7), (4.8), and (4.9) we get

p∑
i=1

‖f(gi)µ(Ii)−A‖ < ε.

To show that the indefinite HB-integral of f is not B-differentiable every-
where on G we fix a point g and a B-interval Kn(g) of rank n and estimate∫
Kn

f . Let Kn(g) = Ki
n for some i, 1 ≤ i ≤ mn.

Since the basis constant of the chosen basic sequence {xn} in X is B and
since ||T−1

n || = 1 we have

2B

∥∥∥∥∥
∫

Kn(g)

f

∥∥∥∥∥ ≥

∥∥∥∥∥
∫

Kn(g)

m
− 3

4
n

mn∑
p=1

χAn
p

µ(An
p )

enp

∥∥∥∥∥
X

≥

≥

∥∥∥∥∥m
− 3

4
n

∫

Kn(g)

χAn
i

µ(An
i )

un
i

∥∥∥∥∥
lmn
2

= m
− 3

4
n .
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Then

(4.10)

∥∥∥ ∫
Kn(g)

f
∥∥∥

µ(Kn(g))
≥ m

1
4
n

2B
.

So the limit of this ratio tend to infinity when n → ∞ for each g ∈ G. This
proves the theorem. �

Remark 4.1. Note that the inequality (4.10) implies a stronger result. In fact
the sequence of the ratios ∫

Kn(g)

f

µ(Kn(g))

is also weakly unbounded. So in the constructed example the indefinite HB-
integral is also weakly B-differentiable nowhere on G.

5. Application to the series with respect to the characters

We associate with the series (2.5) a function F defined on each coset Kn by

(5.1) F (Kn) :=

∫

Kn

Sn(g)dµ

where Sn are partial sums given by (2.6). Similar to the scalar case (see [13]) it
is easy to check that F is an additive function on the family I of all B-intervals.
As it was in the case of Haar and Walsh series (see [10] and [11]) we call this
function a quasi-measure associated with the series (2.5).

Properties of characters, described in Section 2, imply that the sum Sn,
defined by (2.6), is constant on each Kn. Then by (5.1) we have

(5.2) Sn(g) =
F (Kn(g))

µ(Kn(g))
.

The following three lemmas are immediate consequences of the equality (5.2).

Lemma 5.1. If the series (2.5) converges at some point g ∈ G to a value f(g)
then the associated quasi-measure F is B-differentiable at g and DBF (g) =
= f(g).
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Lemma 5.2. If the series (2.5) converges weakly at some point g ∈ G to a value
f(g) then the associated function F is wB-differentiable at g and wDBF (g) =
= f(g).

Lemma 5.3. If the partial sums (2.6) satisfy at a point g the condition

(5.3) Sn(g) = o

(
1

µG(Kn(g))

)

then the associated function F is BG-continuous at the point g.

The next lemma gives a sufficient condition for the assumption (5.3) of the
previous lemma to hold.

Lemma 5.4. Suppose that the coefficients {aγ} of a series (2.5) satisfy the
condition

(5.4) max
γ∈Γ(n+1)\Γn

||aγ ||X → 0 if n → ∞,

then (5.3) holds for partial sums Sn(g) at each point g ∈ G.

Proof. The proof follows the lines of the proof in [13, Lemma 4.3] given for
the scalar case. �

The following statement is essential for establishing that a given series with
respect to characters is the Fourier series in the sense of some general integral.

Theorem 5.1. Let some integration process A be given which produces an
integral additive on I. Let a function F defined on I be the quasi-measure
associated with the series (2.5). Then this series is the Fourier series of an
A-integrable function f iff F (K) = (A)

∫
K
f for any K ∈ I.

Proof. Necessity follows from the following known formula for Dirichlet kernel
of the considered system of characters (see [1]):

Dn(g) :=
∑
γ∈Γn

aγγ(g) =

{
mn if g ∈ Gn ,
0 if g /∈ Gn .

To prove the sufficiency, suppose that F (K) = (A)
∫
K
f for any B-interval K.

Fix a character γ and choose n such that γ ∈ Γn. For this n the group G can
be represented as a finite union G = ∪iK

i
n. As we have mentioned in Section 2,

the character γ and also the sum Sn are constant on each Kn
i . Let Sn(g) = si

and γ(g) = ξi if g ∈ Ki
n. Then by (5.2) we get

aγ =

∫

G

Snγdµ =
∑
i

siξiµ(K
i
n) =

∑
i

ξiF (Ki
n) =

∑
i

ξi (A)

∫

Ki
n

fdµ =

=
∑
i

(A)

∫

Ki
n

fγdµ = (A)

∫

G

fγdµ. �
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In view of (5.2), Lemmas 5.1–5.4 and Theorem 5.1, in order to solve the co-
efficient problem, it is enough to show that quasi-measure associated with the
series (2.5) is the indefinite integral of its derivative (strong or weak, respec-
tively).

By this we reduce the problem of recovering the coefficients to the one of
recovering the primitive and we can use a corresponding theorem on primitives
in Section 3.

Theorem 5.2. Suppose that the partial sums (2.6) of the series (2.5) converge
to a function f everywhere on G outside of a set E with µ(E) = 0, and

limn→∞||Sn(g)|| < ∞

everywhere on E except on a countable set M where (5.3) holds. Then f is
V HB-integrable and (2.5) is the V HB-Fourier series of f.

Proof. By Lemma 5.1 the function F , defined by (5.1), is B-differentiable at
g with DGF (g) = f(g) at any point g at which the series (2.5) converges to
f(g). By (5.2) the inequality (4.1) is satisfied everywhere on E except on the
set M , where by Lemma 5.3 F is B-continuous. Therefore, by Theorem 4.3 f is
V HB-integrable and F is its V HB-integral. Finally using Theorem 5.1, applied
to V HB-integral, we complete the proof. �

In the same way, using Theorem 5.1 for the case of HPB-integral we get

Theorem 5.3. Suppose that the partial sums (2.6) of the series (2.5) converge
weakly to a function f everywhere on G outside of a set E with µ(E) = 0, and
for any x∗ ∈ X∗

limn→∞|x∗Sn(g)|| < ∞

everywhere on E except on a countable set M where (5.3) holds. Then f is
HPB-integrable and (2.5) is the HPB-Fourier series of f.

Remark 5.1. In view of Lemma 5.4 we can replace the condition (5.3) by the
condition (5.4) in the assumption of the above theorems.

The following theorem is a particular case of Theorem 5.2 (or Theorem 5.3,
respectively).

Theorem 5.4. Suppose that the partial sums (2.6) of the series (2.5) converge
(converge weakly) to a function f everywhere on G. Then f is V HB-integrable
(resp. HPB-integrable) on G and the series (2.5) is the V HB-Fourier series
(resp. HPB-Fourier series) of f .

Now we consider the problem of convergence of Fourier series in the sense
of V HB-integral and HB-integral. The partial sums Sn(f, g) of Fourier series,
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with respect to the system Γ, of a function f : G → X integrable in the sense
of these integrals can be represented, according to Theorem 5.1 and formula
(5.2), as

(5.5) Sn(f, g) =
1

µ(Kn(g))

∫

Kn(g)

f.

From this equality together with differentiability property of the indefinite
V HB-integral (see Theorem 4.5) follows

Theorem 5.5. The partial sums Sn(f, g) of the V HB-Fourier series of a V HB-
integrable on G function f are convergent to f almost everywhere on G.

At the same time such a theorem fails to be true for HB-Fourier series.

Namely, Theorem 4.6 implies that for any infinite-dimensional Banach space
there exists a HB-integrable function with values in this space such that its HB-
Fourier series diverges everywhere. In fact the estimate (4.10) and the equality
(5.5) gives us also a possible rate of growth of the partial sums of the divergent
series.

Theorem 5.6. For any infinite-dimensional Banach space X there exists HB-
integrable function f : G → X such that partial sums of its HB-Fourier series

with respect to the system Γ satisfy the estimate ‖Sn(f, g)‖ ≥ m
1
4
n for each

g ∈ G.

But such a rate of growth can not be made arbitrary large for the whole class
of infinite-dimensional Banach spaces. For example it can be deduced from [10]
that for a Pettis-integrable function f taking values in any infinite-dimensional
Banach space with 2-Orlicz property (see definition in [3]) partial sums of
its Fourier series with respect to the Walsh system, which is the systems of
characters of a particular case of a zero-dimensional group, satisfy the relation
‖Sn(f, g)‖ = o(2

1
2n).
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