
Annales Univ. Sci. Budapest., Sect. Comp. 49 (2019) 369–377

ON THE MEMORY CONSUMPTION OF THE

CONTROLLED EUCLIDEAN DESCEND

Gábor Román (Budapest, Hungary)

Communicated by Antal Járai

(Received October 16, 2018; accepted April 10, 2019)

Abstract. In this article we give an algorithm for the controlled euclidean
descend which is tailored to the memory architecture used in the computers
of today. We supply memory allocation strategy for this algorithm.

1. Introduction

During the classical euclidean method utilising division for computing the
greatest common divisor of two integers, the euclidean steps which one performs
are altogether called the euclidean descend. In the process, the distance of the
input numbers diminishes step-by-step. Let’s presume that we want to proceed
with the euclidean descend until the difference of the input numbers goes below
a certain threshold. So let an s > 0 integer be our threshold, and say that we
want to perform euclidean steps on the input numbers a and b until |a− b| < s
becomes true. This is the task for example during the Cornacchia algorithm, see
algorithms 1.5.2 and 1.5.3 in [2], which is used in the Atkin–Morain primality
test, see [1]. When such threshold is applied, one calls the euclidean descend
as controlled euclidean descend.

The first subquadratic algorithm for computing the greatest common di-
visors of two integers is by Knuth, see [3]. Schönhage improved this result

Key words and phrases: Controlled euclidean descend.
2010 Mathematics Subject Classification: 11A05, 11Y16.

370 G. Román

using the idea of the controlled euclidean descend combined with a divide-and-
conquer scheme in [5]. Further development was done by Schönhage, but the
resulting algorithm wasn’t published. Later, the same idea is applied for the
reduction of binary quadratic forms in [6] also by Schönhage. Based on this
paper Möller reconstructed a method called SGCD in [4] which is probably
equivalent to Schönhage’s unpublished algorithm.

Define l(z) := �log2(1 + |z|)� to denote the bit size of a given z integer. For
any z �= 0 integer, if l(z) = s, then 2s−1 ≤ |z| < 2s. It is easier to check the
l(a − b) < s condition instead of |a − b| < s, so we will make decisions based
on bit length instead of the actual value.

We are going to utilise a subroutine called “sdiv,” a controlled division.
This method has three positive integer inputs a > b and s, where s denotes
bit length and min{l(a), l(b)} > s should hold. This routine calculates the
greatest such q integer, for which qb < a and l(a− qb) > s holds. This can be
implemented as follows. Let q′ ← �a/b�, and if l(a − q′b) > s then let q ← q′,
otherwise let q ← q′ − 1. The return values are q and r = a− qb.

Now we give the reconstructed SGCD algorithm as it is stated in Möller’s
article.

Algorithm 1.
(
SGCD(s, a, b)

)
Given a positive integer s threshold and posi-

tive integers a > b for which min{l(a), l(b)} > s holds, this algorithm computes
positive integers α, β and a 2×2 matrix M having non-negative integer entries,
such that detM = 1, (

a

b

)
= M

(
α

β

)

furthermore min{l(α), l(β)} > s and l(α− β) ≤ s hold.

1. (Initialize) If min{l(a), l(b)} ≤ s + 2 holds, then let α ← a, β ← b and
M ← I, then go to step 9.

2. (Split) Let σ ← max{l(a), l(b)} − s. If s ≤ σ holds, then let s′ ← s,
p ← 0, α ← a and β ← b. Otherwise let s′ ← σ, p ← s− σ + 1 and split
a and b such that the a = 2pα+ a0 and the b = 2pβ + b0 equalities hold.

3. (Check) Let h ← s′+�σ/2�. If min{l(α), l(β)} ≤ h holds, then let M ← I
and go to step 5.

4. (First recursive call) Let α, β andM be the return values of this algorithm
recursively called with h threshold and α, β integers.

5. (Reduce) If max{l(α), l(β)} ≤ h holds, then go to step 6, otherwise if
l(α− β) ≤ s′ holds, then go to step 8. Apply sdiv on α and β using s′ as
bit length, furthermore update the M matrix accordingly. Repeat step 5.

On the memory consumption of the controlled euclidean descend 371

6. (Second recursive call) Let α, β and M ′ be the return values of this algo-
rithm recursively called with s′ threshold and α, β integers.

7. (Multiplication) Let M ← MM ′.

8. (Recombination) If p > 0 holds, then let

(
α

β

)
← 2p

(
α

β

)
+M−1

(
a0
b0

)
.

9. (Final reduction) While l(α− β) > s holds, apply sdiv on α and β using
s as bit length, furthermore update the M matrix accordingly.

10. (Finished) The results are α, β and M . Terminate the algorithm.

During the algorithm, when one has to apply sdiv on the α, β positive
integers using bit length s, if α > β, then (q, α) ← sdiv(α, β, s) should be
computed and the matrix should be updated as

M ← M

(
1 q
0 1

)

otherwise (q, β) ← sdiv(β, α, s) should be computed and the

M ← M

(
1 0
q 1

)

update should be done. The details about the correctness and the running time
of algorithm 1 can be found in Möller’s article. We are going to analyse the
algorithm from the viewpoint of memory consumption.

2. Algorithm tailored to machine memory

We are going to use the memory scheme applied in RAM machines, but
with limited cell capacity, like in the computers of today. So we are going to
represent the memory as a one dimensional array, where every element of the
array can represent a bit scheme, which – if one interprets it as a natural number
n – satisfies 0 ≤ n < B for some B > 1 natural number. If M denotes such
an array, then the ith cell or word of this array will be M[i]. Every non-zero
natural number n can be represented uniquely in the n = nkB

k+ . . .+n1B+n0

form, where 0 < nk < B and 0 ≤ ni < B for i �= k. Such representation can be
stored in our memory scheme as M[i] = n0,M[i+1] = n1, . . . ,M[i+k] = nk, if

372 G. Román

the representation starts at the ith cell in the memory. Zero can be comfortably
represented as the only number which has zero length.

Define L(z) := �logB(1 + |z|)� to denote the word length of a given z integer.
Next to bit lengths, from now on we are going to use word lengths for the
representation of integers. The capital letter L will be used to mark word
lengths. If the base B representation of a natural number is L words long, and
it starts at the ith cell, then the last word of the representation will be at the
(i+ L− 1)th cell.

Computer algebraic algorithms are the most efficient when they are aligned
with the memory scheme, so in general they work with word boundaries. Al-
gorithm 1 cannot be modified to work only with word lengths instead of bit
lengths, because there is a delicate interconnection between the splitting and
the reduction steps. So we keep the bit length operations, but handle the
numbers aligned to word boundaries.

Memory is requested from the operating system or allocated, which opera-
tion counts as an expensive one, so we will give an algorithm, which works on
a memory slices requested beforehand the application of the algorithm. Also,
we fall back to handle the numbers “in place.” From the viewpoint of split-
ting, this means that when we have to split a number at the pth bit, we won’t
allocate new memory for the upper part, instead we will do the splitting by
shifting the bits after the pth bit to the start of the next higher word as it can
be seen in figure 1.

M[ia + La − 1]

p

M[ia]

M[iα + Lα − 1]

M[iα]

0

M[ia0 + La0 − 1]

M[ia0]

Figure 1. Splitting a at the pth bit. After the split, a = 2pα + a0 will hold.
During the split we shift the bits above the pth bit to the next higher word
boundary. We set the emptied bits to zero. This procedure requires an addi-
tional available word after the representation of a if the pth bit is not exactly
before a word boundary.

On the memory consumption of the controlled euclidean descend 373

This way we can split a number using only shifting, and the resulting num-
bers can be used readily for further computations. Albeit there should be one
more memory cell available after the number, if the split happens at a bit which
is not before a word boundary. The memory slice which we will use to represent
the a and b input numbers will be A and B respectively.

We have to store the resulting matrices between the recursive calls. For
this, we are going to use the memory slices M11, M12, M21 and M22 to store
the elements of the matrices in a stack-like scheme, see figure 2.

Mij. . . mijm′
ijm′′

ij

Figure 2. Elements of matrices stored in a stack-like scheme.

The elements of the matrices at the same position will be represented in a
common memory slice next to each other. The resulting matrix elements of the
first recursive call at every level will be stored in the (currently) bottom part
of Mij , and the resulting matrix elements of the second recursive call will be
stored right above them.

The memory slices A and B should have more place than which is just
enough for the representation of a and b, because during the recursive calls one
may continuously split the input numbers. Also, despite the fact that we know
an upper bound for the resulting matrices on the topmost level, we need more
place in Mij slices to store the matrices at the lower levels of the recursion.

First we look at the required space in A and B. During algorithm 1, the
deepest level of recursion is at most log2 m, where m is the maximal bit length
of the input numbers at the topmost level. This means that log2 m number of
splits can occur at most. Every split could introduce the need for an additional
word in the memory, so �logB(m+ 1)�+ �log2 m� words will be enough space
in A and in B separately at the beginning of algorithm 2.

Now we turn to the required storage space in an Mij slice before the ap-
plication of algorithm 2. We need the following lemma from the article of
Möller.

Lemma 1 (Size of the matrix indices). Let a, b, α and β be positive inte-
gers, for which max{l(a), l(b)} ≤ n and min{l(a), l(b)} > s. Let furthermore
M := (m11,m12;m21,m22) given row-wise be a 2× 2 matrix with non-negative
integer entries such that (

a

b

)
= M

(
α

β

)

and detM = 1. Then max{l(m11), l(m12), l(m21), l(m22)} ≤ n− s. In fact we
also have max{l(m11 +m12), l(m21 +m22)} ≤ n− s.

374 G. Román

Based on this lemma, the size of the resulting matrix (and the matrices on
the lower levels of the resursion) will be the largest if we invoke algorithm 1
with threshold set to zero. For the partial call tree in this case, see figure 3.

(m, 0)

(m, ⌊m/2⌋)

M1

(⌊m/2⌋, 0)

(⌊m/2⌋, ⌊m/4⌋)

M2

(⌊m/4⌋, 0)

(⌊m/4⌋, ⌊m/8⌋)

M3

. . .

(⌊m/2k−1⌋, 0)

(⌊m/2k−1⌋, ⌊m/2k⌋)

Mk

(⌊m/2k⌋, 0)

Mk+1

Figure 3. Part of the call tree when one invokes algorithm 1 with threshold
set to zero. Going left in the tree symbolises the first recursive call, going
right symbolises the second recursive call. The first number in the pairs is the
maximal bit length of the input numbers during the given call and the second
number is the threshold. Take note that k is such that 2k ≤ m < 2k+1 holds.
The resulting matrices are denoted as M1,M2, . . . ,Mk+1.

If log2 m is the deepest recursion level, then the greatest number of matrices
we have to store simultaneously is k + 1 if 2k ≤ m < 2k+1, see figure 3. The
resulting matrices have non-negative elements, so as we progress left in the tree,
the size of the matrices’ elements get smaller and smaller. Based on this we
have to give an upper bound for the space required to store the corresponding
elements from the M1,M2, . . . ,Mk+1 matrices, to get the required size of an
Mij slice. According lemma 1, this will be

1 +

k−1∑
i=0

⌈
logB

(⌊m
2i

⌋
+ 1

)⌉

because an element of Mk+1 requires one word, furthermore after the first

On the memory consumption of the controlled euclidean descend 375

recursive call, the size of the elements of the resulting Mi matrix can be at
most

⌊
m
2i

⌋
−

⌊
m

2i+1

⌋
, but during the reductions, their size can get bigger.

This size increment may cause problems, but there is a simple solution. On
any recursive level, let the matrix after step (5) be M ′, the return matrix after
step (6) be M ′′, and their product be M . We obtain that

m11 = m′
11m

′′
11 +m′

12m
′′
21,

m22 = m′
22m

′′
22 +m′

21m
′′
12,

which means that above m′
11 there is enough space except one word for m′′

11,
and above m′

22 there is enough space except one word for m′′
22. Moreover above

m′
12 there is space form

′′
21 and above m′

21 there is space form
′′
12. (Again, except

one word in both cases of course.) The cases when either m′
12 = 0 or m′

21 = 0
are trivial, one only has to check the calculation of m12 and m21. (The cases
when either m′′

12 = 0 or m′′
21 = 0 are also trivial because of this.) Hence it is

enough to swap the pointers of the non-diagonal elements.

Algorithm 2.
(
SGCD(s, ia, La, ib, Lb, i11, i12, i21, i22, L11, L12, L21, L22)

)
Let

s be a non-negative integer threshold, furthermore a > b positive integers where
a is represented in A starting at ia having length of La, and b is represented in
B starting at ib having length of Lb. Given that min{l(a), l(b)} > s holds, this
algorithm computes positive integers α in A starting at ia with length returned
in La, and β in B starting at ib with length returned in Lb, furthermore a 2×2
matrix M with its m11, m12, m21 and m22 elements stored in the corresponding
M11, M12, M21 and M22 slices, starting at i11, i12, i21 and i22 having length
returned in L11, L12, L21 and L22 respectively, such that detM = 1,

(
a

b

)
= M

(
α

β

)

where min{l(α), l(β)} > s and l(α− β) ≤ s hold.

1. (Initialize) If min{l(a), l(b)} ≤ s + 2 holds, then let M ← I and go to
step 9.

2. (Split) Let σ ← max{l(a), l(b)}−s. If s ≤ σ holds, then let s′ ← s, p ← 0,
iα ← ia and iβ ← ib. Otherwise let s′ ← σ, p ← s − σ + 1 and shift the
bits of a and b from the pth bit as describe before the algorithm. Let
ia0 ← ia, La0 ← �logB p�, iα ← ia + La0 , Lα ← La − La0 , furthermore
ib0 ← ib, Lb0 ← �logB p�, iβ ← ib + Lb0 and Lβ ← Lb − Lb0 .

3. (Check) Let h ← s′+�σ/2�. If min{l(α), l(β)} ≤ h holds, then let M ← I
and go to step 5.

376 G. Román

4. (First recursive call) Call this algorithm recursively with h threshold, α
represented inA at iα with length Lα, β represented in B at iβ with length
Lβ and M represented in M11, M12, M21, and M22 starting at i11, i12,
i21 and i22 updating the lengths L11, L12, L21 and L22 respectively.

5. (Reduce) If max{l(α), l(β)} ≤ h holds then go to step 6, otherwise if
l(α− β) ≤ s′ holds then go to step 8. Apply sdiv on α and β using s′ as
bit length, furthermore update the M matrix accordingly. Repeat step
5.

6. (Second recursive call) Call this algorithm recursively with s′ threshold,
α represented in A at iα with length Lα, β represented in B at iβ with
length Lβ and M ′ represented in M11, M12, M21, and M22 starting at
i11 + L11, i12 + L12, i21 + L21 and i22 + L22 storing the lengths of the
resulting elements in L′

11, L
′
12, L

′
21 and L′

22.

7. (Multiplication) Let M ← MM ′.

8. (Recombination) If p > 0 holds, then let
(
a

b

)
← 2p

(
α

β

)
+M−1

(
a0
b0

)
,

otherwise shift α and β to ia and ib respectively, furthermore let La ← Lα

and Lb ← Lβ .

9. (Final reduction) While l(a− b) > s holds, apply sdiv on a and b using s
as bit length, furthermore update the M matrix accordingly.

10. (Finished) The results are in A at ia with length stored in La, B at ib
with length stored in Lb, furthermore M represented in M11, M12, M21,
and M22 starting at i11, i12, i21 and i22 with element lengths stored in
L11, L12, L21 and L22 respectively. Terminate the algorithm.

A few comments should be made about the algorithm. At the topmost
call, i11, i12, i21 and i22 should be zero, or the places where we want to put
the resulting elements of our matrix into the M11, M12, M21 and M22 slices.
The only criterion is that we should have enough storage space in a given slice
after the initial cell to store the resulting matrices during the recursive stages.
In step 8 we don’t have to actually calculate the inverse of the matrix M . This
is based on

M−1 =

(
m11 m12

m21 m22

)−1

=
1

detM

(
m22 −m12

−m21 m11

)
=

(
m22 −m12

−m21 m11

)

because detM = 1, and the representation of negative numbers can be avoided
by intervening the signs into the computation of the recombination in the form

On the memory consumption of the controlled euclidean descend 377

of branching. Throughout the recursive calls, three temporary variables with
lengths taken to be the maximum of the word lengths of the input numbers at
the topmost level will suffice to store the intermediate results of the compar-
isons, sdiv operations, matrix multiplication and the recombination.

References

[1] Atkin, A.O.L. and F. Morain, Elliptic curves and primality proving,
Math. Comp., 61(203) (1993), 29–68.

[2] Cohen, H., A Course In Computational Algebraic Number Theory,
Springer–Verlag, third, corrected printing (1996).

[3] Knuth, D.E., The analysis of algorithms, Actes du Congrés International
des Mathématiciens, (1970), 269–274.

[4] Möller, N., On Schönhage’s algorithm and Subquadratic Integer GCD
Computation, Math. Comp., 77(261) (2008), 589–607. Article electroni-
cally published on September 12, 2007.

[5] Schönhage, A., Schnelle Berechnung von Kettenbruchentwicklungen,
Acta Informatica, 1(2) (1971), 139–144.

[6] Schönhage, A., Fast reduction and composition of binary quadratic
forms, ISSAC ’91 Proceedings of the 1991 international symposium on
Symbolic and algebraic computation (1991), 128–133.

G. Román
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest
Pázmány Péter sétány 1/C
Hungary
romangabor@caesar.elte.hu

