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Abstract. In this article, we have proposed a finite difference method for
the numerical solution of third order nonlinear boundary value problem in
partial differential equation. To derive a proposed method, we will replace
differential terms in the problem by the finite difference approximations.
Hence the continuous third order boundary value problem is transformed
into a system of algebraic equations. The solution of the problem is the
solutions of the system of equations at the discrete points. Numerical ex-
periments are performed to test the efficiency and accuracy of the proposed
method on model problems.

1. Introduction

Over the last few years, to describe in more accurate and realistic, a physi-
cal phenomena were formulated into mathematical models. The mathematical
model developed for the study of the dynamics of the soil moisture and subsoil
waters [5], propagation of acoustic waves in relaxing media [10, 14] leads to a
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third order hyperbolic partial differential equations and corresponding bound-
ary value problems. In this article we consider following third order hyperbolic
partial differential equations and corresponding boundary value problems,

(1.1)
∂2u

∂t2
=

∂3u

∂x3
+ f(x, t, u,

∂u

∂t
,
∂u

∂x
,
∂2u

∂x2
), a < x < b, 0 ≤ t < T,

subject to initial-boundary conditions

u(x, 0) = g(x), ut(x, 0) = α(x), u(a, t) = ḡ(t),

∂u(a, t)

∂x
= β(t) and

∂u(b, t)

∂x
= β̄(t),

where g(x), α(x), ḡ(t), β(t), β̄(t) are either real and continuous function of its
argument or g(x), α(x), ḡ(t), β(t), β̄(t) are real constant i.e. independent of

its argument. Also, let us assume that forcing function f(x, t, ∂u
∂t ,

∂u
∂x ,

∂2u
∂x2 ) is

smooth in [a, b], t ≥ 0.

To find an analytically closed form of the solution of the higher order par-
tial differential equations and corresponding boundary value problems is an
important and interesting area of research. Because of the inability in finding
a closed form analytical solution even when it exists [15], in recent years, nu-
merical methods have been developed and applied for the numerical solution
of higher order PDEs and corresponding boundary value problems in natu-
ral sciences [11, 3]. A numerical technique and study on the higher order of
hyperbolic differential equations can be found in the literature [4, 1].

In this article we will not consider any specific assumption on forcing func-

tion f(x, t, u, ∂u
∂t ,

∂u
∂x ,

∂2u
∂x2 ) in problem (1.1) to ensure the existence and unique-

ness of the solution of the problem. However, there is so much work devoted
to the existence and uniqueness of solution of considered boundary value prob-
lems reported in [2, 12, 13] and reference therein. We assume the existence and
uniqueness of the solution. Thus, the emphasis will be on the development of
finite difference method for the approximate numerical solution of the problem
(1.1).

The outline of this article is as follows. In Section 2, we applied the well
known FDM approximation for the numerical solution of problem (1.1). In
Section 3, we discuss the derivation of the proposed method. In section 4,
the numerical results are given to establish efficiency and accuracy of the pro-
posed method on two model problems. Finally a discussion and conclusion are
presented in Section 5.
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2. Development of finite difference method

In this section we propose a finite difference method for the numerical so-
lution of the problem (1.1). We substitute rectangular domain [a, b] × [0, T ]
by a discrete set of mesh points and we wish to determine the numerical so-
lution of the problem (1.1) at these discrete mesh points. Let h = (b − a)/N
and k be the step size respectively in the x and t directions of the Cartesian
coordinate system parallel to coordinate axes. Thus we have generated mesh
points (xi, tj); xi = a + ih, i = 0, 1, ..., N and tj = jk, j = 0, 1, ... Let us de-
note the numerical approximation of u(x, t) at mesh point (xi, tj) by ui,j for
i = 0, 1, ..., N and j = 0, 1, ... Let us denote approximation of the theoretical

value of the forcing function f(x, t, u(x), ∂u
∂t ,

∂u
∂x ,

∂2u
∂x2 ) at mesh point (xi, tj) as

fi,j , i = 0, 1, 2, ....., N, j = 0, 1, ... Thus, using these finite difference, the
problem (1.1) reduced to the following discrete problem at node (xi, tj),

(2.1) uj
tti − f j

i = uj
xxxi i = 0, 1, . . . , N, j = 0, 1, . . .

where utt =
∂2u
∂t2 , uxxx = ∂3u

∂x3 and subject to the initial boundary conditions

u0
i = g(xi), u0

ti = α(xi), uj
0 = ḡj0, uj

x0 = β(tj) and uj
xN = β̄(tj)

Let us define following approximations,

uj
ti =

uj+1
i − uj−1

i

2k
,(2.2)

uj
xi =




uj
i+1 − uj

i−1

2h
, 1 ≤ i ≤ N − 1

uj
xi, i = N,

(2.3)

uj
xxi =




uj
i+1 − 2uj

i + uj
i−1

h2
, 1 ≤ i ≤ N − 1

−uj
i−2 + 8uj

i−1 − 7uj
i + 6huj

xi

2h2
, i = N

(2.4)

and

(2.5) f
j

i = f(xi, tj , u
j
ti, u

j
xi, u

j
xxi).
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Hence, following the ideas in [6, 7, 8, 9], we propose following finite difference
method for the numerical solution of the (2.1),

(2.6) − f
j

i +
1

k2

{
uj+1
i − uj−1

i − 2kuj−1
ti , j = 1

uj+1
i − 2uj

i + uj−1, j = 2, . . .
=

=
1

150h3




50(8uj
i−1 − 9uj

i + uj
i+2 + 6huj

x,i−1), i = 1

6(uj
i−1 + 18uj

i − 33uj
i+1 + 14uj

i+2 + 6huj
x,i−2), i = 2

75(−uj
i−2 + 2uj

i−1 − 2uj
i+1 + uj

i+2), 3 ≤ i ≤ N − 2

50(−uj
i−2 + 9uj

i − 8uj
i+1 + 6huj

x,i+1), i = N − 1

150(uj
i−3 − 6uj

i−2 + 15uj
i−1 − 10uj

i + 6huj
x,i+1), i = N , j = 1, . . .

We have obtained an explicit finite difference method. Thus we have a system
of equations (2.6) at each mesh point (xi, tj) : i = 1, 2, . . . , N and j = 1, 2, . . .
of the discrete domain. This system can be written in matrix form and can be
solved by iterative methods. The solution of the system of equations (2.6) is
the solution of the problem (1.1) in the discrete domain.

3. Derivation of the difference method

In this section we outline the derivation and development of the proposed
finite difference method. Let us write uj

xxxi, i = 1 as a linear combination of
solution and the derivative of the solution of the problem (1.1),

h3uj
xxxi = a0u

j
i−1 + a1u

j
i + a2u

j
i+1 + a3u

j
i+2 + b0hu

j
xi,

where a0, . . . , b0 are constant. To determine these constants, we expand each
term in the above expression in a Taylor series about a mesh point (xi, tj) and
compare the coefficients of hp, p = 0, . . . , 4 in the both sides of the expression.
So we obtained a system of linear equations in a0, . . . , b0. Solving the system
of equations, we got

(a0, a1, a2, a3, b0) =
1

3
(8,−9, 0, 1, 6).

Hence we have

(3.1) h3uj
xxxi = 8uj

i−1 − 9uj
i + uj

i+2 + 6huj
xi.

Thus using (3.1) in (2.1), we have

3h3(uj
tti − f j

i ) = 8uj
i−1 − 9uj

i + uj
i+2 + 6huj

xi, i = 1.



Finite difference method for PDEs 363

Using approximations (2.2)–(2.4), it is easy to prove that f
j

i provides an O(k2+
+h2) approximation for the f j

i . Substituting the a second order difference

approximation for the derivative term uj
tti i.e.

uj
tti =

1

2k2

{
uj+1
i − uj−1

i − 2kuj−1
ti , j = 1

2(uj+1
i − 2uj

i + uj−1), j = 2, . . .

in the above equation. So, we have obtained our proposed finite difference
method for i = 1,

(3.2)

3h3

(
−f

j

i +
1

2k2

{
uj+1
i − uj−1

i − 2kuj−1
ti , j = 1

2(uj+1
i − 2uj

i + uj−1), j = 2, . . .

)
=

= 8uj
i−1 − 9uj

i + uj
i+2 + 6huj

xi

and local truncated error term at mesh point (xi, tj) is

(3.3)

T1 =
h2

60

(
9
∂5u

∂x5
+ 10

∂3u

∂x3

∂f

∂ux
+ 5

∂4u

∂x4

∂f

∂uxx

)
+

+
k2

12


∂3u

∂t3
∂f

∂ut
+




4

k

∂3u

∂t3
, j = 1,

−∂4u

∂t4
, j = 2, . . .


 .

Thus, from (3.3), we conclude that the order of truncation error in the proposed
method is at least O(k + h2). Following the same line of derivation as above,
we derive other equations in (2.6) for different values of i = 2, . . . , N .

4. Numerical results

In this section, we have tested the computational efficiency of our proposed
method (2.6) on linear and nonlinear model problems. In each model problem,
we took a uniform step size h in space and k in the time direction. We have
shown the maximum absolute error MAE in the solution u(x, t) of the problem
(1.1) for different values of N and M. For computation purpose we have used
following formulas,

MAE = max
1≤i≤N

|U(xi, t)− uxi,t|,
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where U(xi, t) and u(xi, t) are respectively exact and computed solution of
problem.

All computations were performed on a Windows 7 Home Basic operating
system in the GNU FORTRAN environment version 99 compiler (2.95 of gcc)
on Intel Core i3-2330M, 2.20 Ghz PC. The iteration is continued until either
the maximum difference between two successive iterates is less than 10−8 or
the number of iteration reached 2× 104.

Problem 1. The model linear problem given by

∂2u

∂t2
=

∂3u

∂x3
+ 7u(x, t) + f(x, t), 0 < x < 1, t ≥ 0,

subject to initial and boundary conditions

u(x, 0) = cos(2x), ut(x, 0) = sin(2x), u(0, t) = cos(t),

ux(0, t) = 2 sin(t), and ux(1, t) = −2 sin(2− t) cos(t),

where f(x, t) is calculated so that the analytical solution of the problem is
u(x, t) = cos(2x − t). The MAE computed by proposed method (2.6) for
different values of N and t are presented in Table 1.

Maximum absolute error

M N t = 1.0× 10−3 t = 5.0× 10−3 t = 1.0× 10−2

8 .12350082(-3) .60963631(-3) .11898875(-2)

4 16 .61929226(-4) .29361248(-3) .50479174(-3)

32 .30577183(-4) .10281801(-3) .81241131(-4)

8 .18513203(-3) .91660023(-3) .18019676(-2)

8 16 .93042850(-4) .44941902(-3) .82939863(-3)

32 .46193600(-4) .19127131(-3) .18996000(-3)

8 .21600723(-3) .10704994(-2) .21122694(-2)

16 16 .10859966(-3) .52946806(-3) .10073781(-2)

32 .54061413(-4) .24259090(-3) .36239624(-3)

Table 1. Maximum absolute error (Problem 1)

Problem 2. The model non-linear problem given by

∂2u

∂t2
=

∂3u

∂x3
− u(x, t)(4u(x, t) + uxx(x, t)) + f(x, t), 0 < x < 1, t ≥ 0,
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subject to initial and boundary conditions

u(x, 0) = sin(2x), ut(x, 0) = 0, u(0, t) = cos(2t),

ux(0, t) = 2, and ux(1, t) = 2 cos(2),

where f(x, t) is calculated so that the analytical solution of the problem is
u(x, t) = sin(2x) cos(2t). The MAE computed by method (2.6) for different
values of N and t are presented in Table 2 and Table 3.

Maximum absolute error

M N t = 5.0× 10−3 t = 1.0× 10−2 t = 2.0× 10−2

8 .66012144(-5) .26255846(-4) .10208786(-3)

4 16 .31739473(-5) .11950731(-4) .36373734(-4)

32 .13485551(-5) .25667240(-5) .31705946(-4)

8 .94920397(-5) .37759542(-4) .14868379(-3)

8 16 .46864152(-5) .18112361(-4) .63590705(-4)

32 .21606684(-5) .66459179(-5) .55879354(-5)

8 .10937452(-4) .43615699(-4) .17288327(-3)

16 16 .54463744(-5) .21420419(-4) .79907477(-4)

32 .38146973(-5) .91195107(-5) .22023916(-4)

Table 2. Maximum absolute error (Problem 2)

Problem 3. The model non-linear problem given by

∂2u

∂t2
=

∂3u

∂x3
+ ut(x, t)(u(x, t) + ux(x, t)) + f(x, t), 0 < x < 1, t ≥ 0,

subject to initial and boundary conditions

u(x, 0) = cos(x), ut(x, 0) = sin(x), u(0, t) = cos(t),

ux(0, t) = sin(t), and ux(1, t) = − sin(1− t),

where f(x, t) is calculated so that the analytical solution of the problem is
u(x, t) = cos(x− t). The MAE computed by method (2.6) for different values
of N and t are presented in Table 4.

In numerical experiment, we observed maximum absolute error increases
as either t increases or k the step size in direction of t decreases. The order of
accuracy in numerical experiment is approximately quadratic.
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Maximum absolute error

M N t = 5.0× 10−3 t = 1.0× 10−2 t = 2.0× 10−2

5 .10758638(-4) .42915344(-4) .17058849(-3)

10 .52303076(-5) .20623207(-4) .77992678(-4)

4 20 .24735928(-5) .87693334(-5) .17471611(-4)

40 .89406967(-6) .77103509(-6) .63247979(-4)

5 .15050173(-4) .60379505(-4) .24053454(-3)

10 .75846910(-5) .30040741(-4) .11640787(-3)

8 20 .36954880(-5) .13872981(-4) .43064356(-4)

40 .15832484(-5) .36843121(-5) .17008185(-3)

5 .17315149(-3) .69051981(-4) .27588010(-3)

10 .87469816(-5) .34838915(-4) .13701618(-3)

16 20 .43362379(-5) .16748905(-4) .58621168(-4)

40 .35762787(-5) .61579049(-5) .18186867(-4)

Table 3. Maximum absolute error (Problem 2)

Maximum absolute error

M N t = 1.0× 10−3 t = 5.0× 10−3 t = 1.0× 10−2

8 .62048435(-4) .30463934(-3) .58943033(-3)

4 16 .30934811(-4) .14442205(-3) .24265051(-3)

32 .15139580(-4) .48995018(-4) .44822693(-4)

8 .93221664(-4) .45764446(-3) .89102983(-3)

8 16 .46372414(-4) .22071600(-3) .39857626(-3)

32 .22828579(-4) .91612339(-4) .82612038(-4)

8 .10859966(-3) .53423643(-3) .10436773(-2)

16 16 .54121017(-4) .25999546(-3) .48381090(-3)

32 .26822090(-4) .11628866(-3) .16367435(-3)

Table 4. Maximum absolute error (Problem 3)
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5. Conclusion

In this article, we have considered for the numerical solution of the hyper-
bolic class of third order boundary value problems PDEs. We applied the well
known FDM approximation, a numerical method for the numerical solution of
the considered class of the problem. The proposed finite difference method has
good accuracy and uses one function value at each mesh point (xi, tj). We
have tested the proposed method on model problems. The numerical results
obtained in experiment suggest the convergence of the proposed method for the
considered problems. Improving the accuracy and computational efficiency of
the proposed method is a challenge. Works in these directions are in progress.
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