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Abstract. A common way to define a norm of a matrix is to take the
supremum of the fraction of the vector norms of the matrix-vector product
and the nonzero vector, with respect to a given vector norm, i.e. the least
upper bound for the norm of the vectors of the transformed unit sphere.
In this paper we examine the above mentioned fraction, defining induction
curves and surfaces, we show that there exist some vectors, such that this
fraction is independent of the applied p-norm (and are not eigenvectors).
These are to be called p-eigenvectors. Exact solutions are constructed for
some simple matrices. No previous work was found in this topic so far.

1. Introduction

The starting point of the research to be presented is the investigation of the
p-norm or power norm. Solutions for linear systems or approximation problems
using different power norms is a traditional, widely and actively studied field
in mathematics and signal processing [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 16, 17].
Approximation in 2-norm is considered a classical problem, the case of p = 1
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and p = ∞ are well-studied with both classical results and recent achievements,
and the cases of 1 < p < ∞ are also often considered in various research areas.

This paper introduces a new problem related to p-norms of matrices, con-
sidering a generalization of eigenvectors, called p-eigenvectors. As a part of this
novel approach, we introduce induction sets of matrices as well. No previous
work was found dealing with these topics so far. Furthermore we give exact
answers for the raised questions in simple cases.

Recall the power norms or p-norms for vectors of Rn with 2 ≤ n ∈ N:

‖.‖p : Rn → R, ‖x‖p =

(
n∑

k=1

|xk|p
)1/p

(p ∈ [1,∞)) ,

and
‖x‖∞ =

n
max
k=1

|xk| .

It is well known that limp→∞ ‖x‖p = ‖x‖∞ (x ∈ Rn). Let us now consider a

matrix A ∈ Rn×n. The p-norm of A is defined as

‖.‖p : Rn×n → R, ‖A‖p = sup
x �=0

‖Ax‖p
‖x‖p

(p ∈ [1,∞]) .

As equivalent descriptions one may consider the supremum only for the ele-
ments of the unit sphere, i.e. ‖x‖p = 1, thus the fraction becomes unnecessary.

The p-norm of a matrix is also called the matrix norm induced by the
corresponding vector p-norm. Induced norms are also called natural matrix
norms. (A well-known counterexample is the Frobenius norm, which is not a
natural matrix norm.)

2. Basic notions

In topics of mathematical analysis and numerical methods related to matrix
norm, the detailed analysis of the fraction behind the supremum in the defi-
nition of the matrix p-norm is usually skipped. The research presented here
stems from these examinations neglected so far (at least to the knowledge of
the author).

2.1. Induction sets

As a general definition, let us first formulate a geometric representation of
this fraction.
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Definition 1. Given a matrix A ∈ Rn×n with 2 ≤ n ∈ N and p ∈ [1,∞], the
set of points

Ip(A) :=

{
‖Ax‖p
‖x‖p

· x

‖x‖2
∈ Rn : 0 �= x ∈ Rn

}
⊂ Rn

is called the induction set of A with parameter p. The induction set may
be called induction curve for n = 2, induction surface for n = 3, induction
manifold in general.

Note that if x′ = c · x (0 < c ∈ R, x, x′ ∈ Rn \ { 0 }), then

‖Ax′‖p · x′

‖x′‖p · ‖x′‖2
=

‖Acx‖p · cx
‖cx‖p · ‖cx‖2

=
c · ‖Ax‖p · c · x
c · ‖x‖p · c · ‖x‖2

=
‖Ax‖p · x
‖x‖p · ‖x‖2

,

thus for vectors of the same direction the induction set contains only one point
of Rn in the same direction; for all possible directions. This means that Ip(A)
is actually a curve around the origin for n = 2, a surface surrounding the
origin for n = 3 etc., taking into account also that the p-norm is a continuous
function of x ∈ Rn. (Provided that A is invertible.) However if we repeat the
above calculations for 0 > c ∈ R, e.g. c = −1, we see that the induction set is
symmetric with respect to the origin, i.e. y ∈ Ip(A) ⇐⇒ −y ∈ Ip(A).

Remark 1. We will not take advantage of the triangle inequality, so in Defi-
nition 1 the restriction p ≥ 1 is not important, we may also consider p ∈ (0, 1),
quasi-norms.

Remark 2. In Definition 1 the Euclidean-norm is also presented in the denom-
inator. Actually any p-norm could be used here, such that x/ ‖x‖p will define
a “direction” in Rn. The reason behind using the 2-norm is basically to have
the plots in accordance with the common sense of visual perception. However
it is important to have it fixed, such that induction sets for different p values
may be compared. For completeness we mention, that one may define Ip,q(A)
with q ∈ [1,∞] playing the role of the Euclidean norm, and then choose q = 2.

Example 1. Figure 1 presents ten examples for induction curves in R2. We
used 5 values for p, namely 1, 4/3, 2, 4 and∞ with light to dark gray in case of 2
matrices. On the left-hand-side, we considered the matrixA1 below correspond-
ing to the rotation with 45◦ in negative direction with a multiplication factor
of

√
2, similar to the Walsh-matrix. On the right-hand-side the induction set

of the diagonal matrix A2 is presented. Figure 5 features an additional, rather
artistic example with the symmetric matrix A3, using p = 4/8, 5/8, 6/8, 7/8, 1
and their reciprocals, so with quasi-norms also involved.

A1 =

(
1 1
−1 1

)
, A2 =

(
2 0
0 1

)
, A3 =

(
3 −1
−1 3

)
.
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Figure 1. Some examples for induction curves in R2 in case of a Walsh-like and
a diagonal matrix, with five p-norms. Circles denote the radial units. Shades
of gray indicate curves for different p-norms.

As some explanation for the plots of Figure 1 we make the following statements.
From these images also some norms of these matrices can be easily read ob-
serving the maximum absolute values of the curves (their furthest points from
the origin), which are also easy to verify by the usual formulas for these norms.
Namely

‖A1‖1 = 2, ‖A1‖∞ = 2, ‖A2‖1 = 2, ‖A2‖2 = 2, ‖A2‖∞ = 2.

Note also that I2(A1) is a circle (of radius
√
2), i.e. ‖A1‖2 =

√
2. Furthermore

one may observe, conjure that
√
2 < ‖A1‖p < 2, and ‖A2‖p = 2 (p ∈ (1,∞)).

Further examples related to later Sections can be seen on Figure 4.

Remark 3. For practical purposes (e.g. implementation, creating illustrations,
birthday presents∗) it is useful to have a parametric description of induction
curves, using polar coordinates:

Ip(A) = { (r · cosϕ, r · sinϕ) : ϕ ∈ [0, 2π) } , with r = f(ϕ) = (n ◦ v)(ϕ),

v : R → R2, v(ϕ) =

(
cosϕ
sinϕ

)
, n : R2 \ {0} → R, n(x) =

‖Ax‖p
‖x‖p

.

Of course a similar formalization is possible for induction surfaces too.

∗The exact same graphic printout (with a concise parametric description) as on the left of
Figure 1 was presented by the author as a birthday present to Prof. Ferenc Schipp, Prof. Péter
Simon and late Prof. William R. Wade on the occasion of their 75th, 65th and 70th birthdays
respectively in Tállya (Tokaj wine region), during the festive dinner of the Conference on
Dyadic Analysis and Related Fields with Applications (DARFA) organized by the Institute of
Mathematics and Computer Science, College of Nýıregyháza, Hungary, in early June, 2014.
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Remark 4. The induction sets Ip(A) are not to be confused with the trans-
formed unit sphere (in a p-norm):

Tp(A) :=
{
Ax ∈ Rn : x ∈ Rn, ‖x‖p = 1

}
⊂ Rn.

Although this is a similar structure, its definition is essentially different. In
case of Tp(A) the position vectors of the unit sphere are transformed by the
matrix (so their direction may change, as well as their norms), while in case of
Ip(A) the position vectors of the unit sphere are multiplied with a factor by
the norm of the transformed vector (so their direction does not change).

A detailed description and analysis of induction curves, surfaces etc. for
specific (classes of) matrices and norms lies beyond the scope of the current
paper. Instead we will focus on one peculiar property, some specific points
of interest of induction curves. Observe that for each matrix the curves for
different p values intersect in one common point. More precisely the set

⋂
p∈[1,∞]

Ip(A)

is not empty, e.g. in the presented cases it contains 8 elements. This means that
in these cases (with a fixed A and x), the fraction ‖Ax‖p / ‖x‖p is independent
of the value of p, or in other words, the function

f : [1,∞] → R, f(p) =
‖Ax‖p
‖x‖p

is constant in p. The next section is devoted to the description of this phe-
nomenon.

2.2. Introducing p-eigenvectors

Based on the previously stated observation, verified for several matrices, let
us give the next definition. Statements of some basic properties shall follow,
the one-line proofs are left as an exercise.

Definition 2. Given a matrix A ∈ Rn×n (2 ≤ n ∈ N), a vector x ∈ Rn, x �= 0
shall be called a p-eigenvector of A, if there exists a constant γ ∈ R+

0 , such
that for all p ∈ [1,∞]:

‖Ax‖p
‖x‖p

= γ.

The value γ is the p-eigenvalue associated with the p-eigenvector x.
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Remark. It is clear from the definition that a p-eigenvalue cannot be less than
zero, since it is a fraction of nonnegative numbers. Thus γ ∈ R+

0 . Furthermore
similarly to Remark 1, we note that p ∈ (0, 1) may also be included.

Using the terms “eigenvector” and “eigenvalue” is justified by the following
straightforward proposition.

Proposition 1. If 0 �= v ∈ Rn is an eigenvector of A ∈ Rn×n with eigenvalue
λ ∈ R, then v is also a p-eigenvector of A with p-eigenvalue |λ|.

Thus p-eigenvectors may be considered a generalization of (regular) eigen-
vectors. This motivates the following definition.

Definition 3. Such p-eigenvectors of a matrix that are not eigenvectors of the
matrix (in the regular sense) are called non-trivial p-eigenvectors, while real
valued eigenvectors of matrices may be referred to as trivial p-eigenvectors.

The theory and numerical methods for eigenvectors are well-developed.
Therefore in cases where it is not misleading, we may shortly just write
“p-eigenvectors”, instead of “non-trivial p-eigenvectors”.

Proposition 2. If 0 �= x ∈ Rn is a p-eigenvector of A ∈ Rn×n, then the vector
x′ = c · x ∈ Rn (c ∈ R, c �= 0) is also a p-eigenvector of A associated with the
same p-eigenvalue.

Thus one may also speak of p-eigendirections, p-eigensubspaces, in this case
together with 0 also allowed.

Proposition 3. If 0 �= x ∈ Rn is a p-eigenvector of A ∈ Rn×n with p-
eigenvalue γ ∈ R+

0 , then x is also a p-eigenvector of c · A (c ∈ R, c �= 0)
associated with the p-eigenvalue |c| · γ.

The following questions naturally arise:

• For a given matrix A ∈ Rn×n, are there any p-eigenvectors? (Existence.)

• How many p-eigenvectors exist for a given matrix?

• How can one construct the p-eigenvectors, and p-eigenvalues of a matrix
(if they exist)?

• Do p-eigenvectors exist for every matrix in Rn×n? If not, then how can
the family of matrices with non-trivial p-eigenvectors be characterized?

• What can be stated about the generalization to C?

Many of the above stated general problems are open questions. Nevertheless
in the next section we will give some answers and exact solutions in some
relatively simple cases.
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3. Main results

The first results related to p-eigenvectors presented in this paper concern
diagonal matrices as the most simple class of matrices. Notice that already in
case of arbitrary A ∈ R2×2, with

A =

(
a b
c d

)
and x =

(
x1

x2

)
, thus Ax =

(
ax1 + bx2

cx1 + dx2

)
,

finding the appropriate x to A where the function

f : [1,∞) → R, f(p) =
‖Ax‖p
‖x‖p

=

(
|ax1 + bx2|p + |cx1 + dx2|p

)1/p
(
|x1|p + |x2|p

)1/p

is constant in p seems intimidating. Therefore as a first approach we aim to
solve the problem for diagonal 2× 2 matrices.

Remark. Unfortunately f(∞) cannot be expanded in the above manner, thus
now ∞ is removed from the domain of f . Of course f(∞) may be (and should
be) still considered as a limit, or as expanded with the maximum operator.

3.1. 2 × 2 diagonal matrices

Let us formalize the problem, and construct the p-eigenvectors. Introduce

A =

(
a 0
0 b

)
and x =

(
x1

x2

)
, thus Ax =

(
ax1

bx2

)
,

with 0 �= a, b ∈ R and x1, x2 ∈ R. If both x1 = 0 and x2 = 0, then we would
have the 0 vector, which is ruled out by definition. If exactly one of x1 and
x2 is 0, then we would arrive at the trivial p-eigenvectors of A. Thus we may
assume x1 �= 0 and x2 �= 0. With these notations

f : [1,∞) → R, f(p) =
‖Ax‖p
‖x‖p

=

(
|ax1|p + |bx2|p

)1/p
(
|x1|p + |x2|p

)1/p .

In this case it is easy to see that the signs of x1, x2, a, b do not matter, thus we
may assume that these values are positive. (This is not true for not diagonal
matrices.) Note that this also means that

Ip
(
a 0
0 b

)
= Ip

(
−a 0
0 b

)
= Ip

(
a 0
0 −b

)
= Ip

(
−a 0
0 −b

)
,
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and that if x = (x1, x2)
T is a p-eigenvector, then so are

x′ =

(
−x1

x2

)
, x′′ =

(
x1

−x2

)
, x′′′ =

(
−x1

−x2

)
.

Of course from Proposition 2 it was already clear that if x is a p-eigenvector,
then so is x′′′, and similarly to the case of x′ and x′′.

In light of Propositions 2 and 3 we may further simplify the form of function
f using c = |b/a| > 0 and m = |x2/x1| > 0 to

f(p) =

(
1 + (cm)p

1 +mp

)1/p

=: F (p)1/p,

considering

A =

(
1 0
0 c

)
and x =

(
1
m

)
, thus Ax =

(
1
cm

)
,

with our goal now rephrased as to find the appropriate m to a given c, such
that f is constant in p. The obvious choice is to examine the derivative of f ,
and find its zeros. Note that f is differentiable (if we also consider p ∈ (0, 1)
then also at p = 1), and

f ′(p) = F (p)1/p ·
(

F ′(p)

p · F (p)
− lnF (p)

p2

)

=
F (p)−1+1/p

p2︸ ︷︷ ︸
�=0

·
(
p · F ′(p)− F (p) · lnF (p)

)
︸ ︷︷ ︸

H(p)

.

The first factor is always positive, so f ′(p) can be 0, iff. the second factor,
H(p) := p · F ′(p)− F (p) · lnF (p) = 0. We remark that

F ′(p) =
(cm)p ln (cm)

1 +mp
− (1 + (cm)p)mp ln (m)

(1 +mp)2
.

With this H(p) can be written with parameters c and m. Proving H(p) = 0 for
all p (such that f(p) becomes constant) is still tedious, and also unnecessary if
we would just like to find the relation between c and m. Thus it is sufficient to
substitute p = 1, and investigate H(1) = 0.

H(1) =
cm ln (cm)

1 +m
− (1 + cm)m ln m

(1 +m)2
− 1 + cm

1 +m
ln

(
1 + cm

1 +m

)
.

The common denominator (1+m)2 is strictly positive (also greater than 1), so
we shall write

H(1) = Hc,m(1) =
G(c,m)

(1 +m)2
,



Introducing p-eigenvectors 333

with

G(c,m) = cm ln (cm) + cm2 ln (cm)−m ln (m)− cm2 ln (m)
− ln (1 + cm) + ln (1 +m)− cm ln (1 + cm) + cm ln (1 +m)
−m ln (1 + cm) +m ln (1 +m)− cm2 ln (1 + cm) + cm2 ln (1 +m).

The zeros of this 12 term sum with logarithmic expressions are not plain to
see. Some numerical calculations were carried out to aid our search for roots.
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Figure 2. Some sections as functions of m with fixed c values of the function
G(c,m). Zeros are located at integer abscissae.

On Figure 2 we plotted some sections of G(c,m) with fixed c values as
a function of one positive variable, m. The left-hand-side figure shows the
functions for values

c =
1

2
,
1

3
,
1

4
, . . . ,

1

9
.

Notice that for values 1/4 and 1/9 the curves intersect the horizontal axis at
integer points m = 2 and m = 3. To further elaborate this conjecture, the
right-hand-side figure shows the functions for values elements of the set

{
c =

1

k2
: k = 2, 3, . . . , 7

}
.

The intersections clearly seem to arise again at integer abscissae, thus this
underpins the conjecture, that the zero of G(c,m) for a given c > 0 is exactly
at m = 1/

√
c, i.e.

G

(
c,

1√
c

)
= 0 (0 < c ∈ R), or (⇔) G

(
m2,

1

m

)
= 0 (0 < m ∈ R).

Symbolic substitution and evaluation confirms the above statements.

Based on the above calculations, we can state the following lemma.
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Lemma 1. Let A ∈ R2×2 be a diagonal matrix with non-zero diagonal ele-
ments. Apart from the trivial p-eigenvectors, the canonical unit vectors, there
are exactly 2 further non-trivial p-eigenvectors x′, x′′ ∈ R2 of A independent of
each other. Namely

if A =

(
a 0
0 b

)
, then x′ =

(√
|b|√
|a|

)
and x′′ =

(
−
√
|b|√
|a|

)
,

and the associated p-eigenvalue is
√
|ab| (in both cases).

Proof. The calculations before the statement of the theorem may be considered
as a constructive, “a-priori” proof. But with the appropriate values now in our
hands, we shall formulate a significantly more simple “a-posteriori” proof. It is
sufficient to consider only x := x′, and we may assume a, b > 0, since absolute
value is taken everywhere in the norms.

‖Ax‖p
‖x‖p

=

∥∥∥(a
√
b, b

√
a)T

∥∥∥
p∥∥∥(

√
b,
√
a)T

∥∥∥
p

=

∥∥∥
√
ab · (

√
a,
√
b)T

∥∥∥
p∥∥∥(

√
b,
√
a)T

∥∥∥
p

=
√
ab,

independent of p. So the effect of multiplying a p-eigenvector by the diagonal
matrix is basically to switch the roles, invert the ratio of the elements of the
vector.

Uniqueness (for vectors with positive elements) follows e.g. from the analysis
of the function G above. �

Corollary 1. In case of the diagonal matrix A ∈ Rn×n of Lemma 1, with
a, b �= 0 the set

S :=
⋂

p∈[1,∞]

Ip(A) ⊂ R2,

contains exactly 8 distinct elements, namely

S =

{(
a
0

)
,

(
−a
0

)
,

(
0
b

)
,

(
0
−b

)
,

(
b′

a′

)
,

(
−b′

a′

)
,

(
b′

−a′

)
,

(
−b′

−a′

)}
,

where a′ = r ·
√
|a|, b′ = r ·

√
|b|, and r =

√
|ab| /(|a|+ |b|).

Proof. The first 4 elements of the set S correspond to the trivial p-eigenvectors.
The second 4 elements are variants (with the signs of the elements) of the
vector x = (

√
|b|,

√
|a|)T . According to the definition of the induction set (see

Definition 1) and Lemma 1:

x =

(√
|b|√
|a|

)
, ‖x‖2 =

√
|a|+ |b|,

‖Ax‖p
‖x‖p

≡
√
|ab|.
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Then

‖Ax‖p
‖x‖p

· x

‖x‖2
=

√
|ab|

|a|+ |b|
·
(√

|b|√
|a|

)
∈ Ip(A) (p ∈ [1,∞]),

thus this vector is in S. �

Example 2. For the matrix A2 ∈ R2×2 (with induction curves presented on
Figure 1, right-hand-side), we have the independent non-trivial p-eigenvectors
x′ and x′′ as follows:

A2 =

(
2 0
0 1

)
, x′ =

(
1√
2

)
, x′′ =

(
−1√
2

)
,

and for the set of intersection of the induction curves we have

S =

{(
±2
0

)
,

(
0
±1

)
,

(
±
√
2/3

±
√

4/3

)
,

}
.

Figure 3 provides a visual feedback about the correctness of the calculation.
Only a smaller portion of the plot is presented, zoomed in on the point of
interest.

Figure 3. Visual verification of the calculation of the common intersection
point (marked with circles) in case of the diagonal matrix as in Figure 1, close
up.

Lemma 1 assumes that none of the two diagonal elements of the matrix is
zero. The case when both of them are is trivial. However the case when exactly
one of them is zero deserves some consideration.

Lemma 2. Let A ∈ R2×2 be a diagonal matrix with one zero and one non-zero
diagonal element. Then A has only trivial p-eigenvectors.
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Proof. Justify that the canonical unit vectors are trivial p-eigenvectors.

To show that no non-trivial p-eigenvectors exist, we follow the steps of the
calculations in Section 3.1. Because of Propositions 2 and 3 we may consider

A =

(
1 0
0 0

)
and x =

(
1
m

)
, thus Ax =

(
1
0

)
,

with m > 0. Note that the case when the other diagonal element is non-zero
can be reduced to this case by switching elements of x too. Graphically this
would mean a reflection on the diagonal line x1 = x2.

With the above notations it turns out that

f(p) =

(
1

1 +mp

)1/p

=: F (p)1/p and F ′(p) = −mp ln (m)

(1 +mp)2
.

With H(p) := p · F ′(p) − F (p) · lnF (p) again, we use H(1) = 0 to determine
the solutions:

H(1) = − m ln m

(1 +m)2
− 1

1 +m
ln

(
1

1 +m

)
.

Since (1 +m)2 is still strictly positive (also greater than 1), so

H(1) = Hm(1) =
G(m)

(1 +m)2
,

with

G(m) = −m ln (m) + ln (1 +m) +m ln (1 +m).

We show that G(m) > 0 for all m > 0. Indeed

lim
m→0

G(m) = 0, and G′(m) = ln
1 +m

m
> 0 (m > 0).

Thus there is no m > 0 for which the derivative of f equals 0 at p = 1, so there
is no (non-trivial) vector with constant p-norm. �

Example 3. The left-hand-side image in Figure 4 shows the induction curves
for the matrix

A4 =

(
0 0
0 4

)

for the same p values as before. One may observe the trivial p-eigenvectors and
the lack of non-trivial ones.
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Figure 4. Some further examples for induction curves in R2 in case of a
diagonal matrix (with only one non-zero element) and a rotation matrix (with
scaling), with five p-norms. Circles denote the radial units. Shades of gray
indicate curves for different p-norms.

Remark 5. The induction curve for p = 1 (plotted with light gray) looks
similar to the Szegő curve [5, 14]. The Szegő curve arises as the limit curve
where the zeros of the Taylor polynomials of the complex exponential function
converge (scaled by 1/n), originally pointing to the right. It is usually described
using complex notions as the set

{
z ∈ C :

∣∣z e1−z
∣∣ = 1

}
. A description using

matrices, or its approximation with induction curves seem to be interesting
questions.

3.2. General diagonal matrices

Lemma 1 may be generalized to diagonal matrices of Rn×n.

Theorem 1. Let D ∈ Rn×n, n ≥ 2 be a diagonal matrix with distinct non-zero
elements d1, d2, . . . , dn ∈ R \ { 0 } in the diagonal. Apart from the n trivial
p-eigenvectors, the canonical unit vectors e1, e2, . . . , en ∈ Rn, the following
n(n − 1) vectors are further distinct non-trivial p-eigenvectors of D. For all
1 ≤ k < l ≤ n:

x′
kl =

√
|dl| · ek +

√
|dk| · el and x′′

kl = −
√
|dl| · ek +

√
|dk| · el.

The associated p-eigenvalue for x′
kl and x′′

kl is
√

|dkdl| (1 ≤ k < l ≤ n).

Proof. Basically we are considering the coordinate planes, and apply Lemma 1,
since the effect of applying D to the vectors of the coordinate plane is the
same as of a corresponding 2 × 2 diagonal matrix. Namely for a given pair
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1 ≤ k < l ≤ n:

Dx′
kl = dk

√
|dl| · ek + dl

√
|dk| · el =

=
√
|dkdl| ·

(
(sgn dk) ·

√
|dk| · ek + (sgn dl) ·

√
|dl| · el

)
,

thus

‖Dx′
kl‖p =

√
|dkdl| ·

(√
|dk|

p
+

√
|dl|

p
)1/p

=
√
|dkdl| · ‖x′

kl‖p

with the factor independent of p. The same goes for x′′
kl.

The number of the above considered non-trivial p-eigenvectors is

2 ·
(
n

2

)
= n(n− 1). �

Remark 6. Theorem 1 did not state that the listed p-eigenvectors are all
the p-eigenvectors that exist in case of the diagonal matrix. It is posed as a
question whether further non-trivial p-eigenvectors can be found that do not
lie on a coordinate plane, i.e. have more than 2 non-zero components.

Remark 7. Theorem 1 assumes that the diagonal elements are all distinct,
and non-zero. If some elements are equal, then the corresponding canonical
unit vectors span a (regular) eigensubspace, therefore reducing the number
of non-trivial p-eigenvectors of the above form. Similarly if some elements
are zero, then the coordinate planes containing the corresponding canonical
unit vectors will again not contain non-trivial p-eigenvectors (c.f. Lemma 2).
Calculating the exact number of solutions lost these ways is left as an exercise.
The combined case of having zeros and equal diagonal elements may also be
considered.

Example 4. Consider the below matrix and vectors.

D =



1 0 0
0 4 0
0 0 9


 and



±2
±1
0


 ,



±3
0
±1


 ,




0
±3
±2


 .

The listed vectors are p-eigenvectors of D with the associated p-eigenvalues 2, 3
and 6 respectively. The set of all (known) p-eigenvalues is { 1, 2, 3, 4, 6, 9 }.

3.3. A note on linearity

While in case of (regular) eigenvectors it is true, that if v1 and v2 are linearly
independent eigenvectors of a matrix associated with the same λ eigenvalue,
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then any (non-trivial) linear combination of these vectors is also an eigenvector
with the same eigenvalue, thus one may speak of higher dimensional eigen-
subspaces. However in case of (non-trivial) p-eigenvectors, this is not true in
general, witnessed by the following counterexamples.

Example 5. Observe already in the most simple case of

A =

(
a 0
0 b

)
∈ R2×2 and x1 =

(√
b√
a

)
, x2 =

(
−
√
b√
a

)
,

with a, b > 0, that x1 and x2 are both p-eigenvectors associated with the
p-eigenvalue

√
ab (c.f. Lemma 1), but x1 + x2 = 2

√
a · e2 is specifically a

(trivial) p-eigenvector associated with the p-eigenvalue b, but 2 ·x1+x2 (or any
other linear combination with coefficients of different absolute value) is not a
p-eigenvector at all.

Example 6. As a numeric example of higher dimensions, examine

A =



1 0 0
0 4 0
0 0 4


 ∈ R3×3 and x1 =



2
1
0


 , x2 =



2
0
1


 .

The vectors x1 and x2 are p-eigenvectors both associated with the p-eigenvalue
2, but any linear combination of them with non-zero coefficients is not a p-
eigenvector.

It is a question whether one could find such sets of non-trivial eigenvectors
for some matrices, which are not composed of distinct points, directions, but
rather have some positive measure, i.e. define an interval, a closed curve or
area etc. These—if such exist—may be called p-eigensets. Or non-trivial p-
eigenvectors may only be found as separate points?

3.4. Rotation

In this section real 2 × 2 matrices corresponding to rotations of the plane
around the origin shall be considered. Let us use the following notation:

R(ϕ) :=

(
cosϕ − sinϕ
sinϕ cosϕ

)
∈ R2×2 (ϕ ∈ R).

R(ϕ) corresponds to the rotation with angle ϕ in positive direction.

Theorem 2. The matrix R(ϕ) ∈ R2×2 (ϕ ∈ R, ϕ �= k · π/2, k ∈ Z) has no
trivial p-eigenvectors, but has 4 non-trivial p-eigenvectors as follows:

xk =

(
cos θk
sin θk

)
, with θk = −ϕ

2
+ k · π

4
(k = 0, 1, 2, 3).
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If ϕ = k · π/2 for some k ∈ Z then every 0 �= x ∈ R2 is a p-eigenvector. The
associated p-eigenvalue is always 1.

Remark. So in the first case the angles of the 4 p-eigenvectors are evenly
distributed along the half unit circle, the 8 intersection points of the induction
sets along the (full) unit circle.

Proof. Based on whether ϕ is a multiple of π/2 or not, we distinguish two
cases.

Case 1. If ϕ = k · π/2 for some k ∈ Z, then there are 4 possibilities for the
rotated vector R(ϕ) · x as follows:

x =

(
x1

x2

)
∈ R2 \ { 0 } , x′ =

(
−x2

x1

)
, x′′ =

(
−x1

−x2

)
, x′′′ =

(
x2

−x1

)
.

Thus ‖R(ϕ) · x‖p = ‖x‖p clearly holds in each case.

Case 2. If ϕ �= k · π/2, k ∈ Z, then the vectors are rotated such that
their directions always changes, no real valued eigenvectors are present. In this
case the 4 p-eigenvectors may be divided into 2 groups based on their similar
behavior

Case 2.1. Group 1 consists of vectors with k = 0, 2. In this case the
multiplication with R(ϕ) results in changing the sign of one component of the
vector xk. In case of k = 0, the calculation of R(ϕ) ·x0 involving trigonometric
identities, addition formulas goes as follows.

R(ϕ) ·
(
cos θ0
sin θ0

)
= R(ϕ) ·

(
cos (−ϕ/2)
sin (−ϕ/2)

)
=

(
cos (ϕ/2)
sin (ϕ/2)

)
=

(
cos θ0
− sin θ0

)
.

In case of k = 2 we have

R(ϕ) ·
(
cos θ2
sin θ2

)
= R(ϕ) ·



cos

(π
2
− ϕ

2

)

sin
(π
2
− ϕ

2

)


 =

(
− sin (ϕ/2)
cos (ϕ/2)

)
=

(
− cos θ2
sin θ2

)
.

Clearly no p-norm changes by the transformation.

Case 2.2. The other group consists of vectors with k = 1, 3. The mul-
tiplication with R(ϕ) results now in switching the components of the vec-
tor xk (while the signs may also change). Briefly summarizing the calcula-
tion for k = 1, using also the identity for complementary angles in the form
cos (π/4− ϕ/2) = sin (π/4 + ϕ/2) and vice versa we have

R(ϕ) ·
(
cos θ1
sin θ1

)
= R(ϕ) ·



cos

(π
4
− ϕ

2

)

sin
(π
4
− ϕ

2

)


 =



sin

(π
4
− ϕ

2

)

cos
(π
4
− ϕ

2

)


 =

(
sin θ1
cos θ1

)
.
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And for k = 3 the result is as follows:

R(ϕ) ·
(
cos θ3
sin θ3

)
= R(ϕ) ·



cos

(
3π

4
− ϕ

2

)

sin

(
3π

4
− ϕ

2

)


 =

(
− sin θ3
cos θ3

)
.

Again, clearly no p-norm changes by the transformation. Imagining the act of
rotation for the given vectors with a given angles is encouraged. �

Scaling may also be involved aside a rotation. As a direct consequence of
Theorem 2 and Proposition 3 we arrive at the following result.

Proposition 4. The matrix c · R(ϕ) ∈ R2×2 (0 �= c ∈ R, ϕ ∈ R, ϕ �= k · π/2,
k ∈ Z) has no trivial p-eigenvectors, but has the same 4 non-trivial p-eigenvec-
tors as R(ϕ). If ϕ = k · π/2 for some k ∈ Z then every 0 �= x ∈ R2 is a
p-eigenvector. The associated p-eigenvalue is always |c|.

Example 7. First we refer again to the left-hand-side image in Figure 1 with
the matrix corresponding to rotation with 45 degrees. And as a second example
the right-hand-side image in Figure 4 shows the induction curves for the matrix

A5 = 3 ·R(−π/9)

for the same p values as before. (Both together with a scaling factor.) Note the
8 intersection points spread equally along the circle. In case of A5 with p = 2
the induction curve is a circle of radius 3.

4. Conclusions and further research

In depth examination of the fraction in the definition of power norms led
us to the definition of induction sets. Along this paper we presented many
examples in case of R2, i.e. induction curves. Noticing common intersection
points of these motivated the definition of p-eigenvectors, for which the above
mentioned fraction is constant, independent of the parameter of the power
norm (or quasi-norm).

These examinations seem to be neglected, overlooked so far in the treatise
of related subjects, no previous results were found in the literature. Thus
the author claims the introduction and examination of induction sets and
p-eigenvectors as his own new results.

We discussed basic general properties of p-eigenvectors (Propositions of Sec-
tion 2.2), and constructed exact solutions for diagonal matrices (Lemmas 1, 2
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Figure 5. An artistic utilization of induction curves with quasi-norms also
involved, resembling a butterfly.

and Theorem 1) and rotation matrices, possibly with a scaling factor (Theorem
2 and Proposition 4). Some corollaries and many examples were given.

The scripts and other software created during the research are available to
download at:

http://numanal.inf.elte.hu/~locsi/indsets/

Throughout the article we mentioned several questions yet unsolved. To
sum these up:

• Detailed description and analysis of induction curves, surfaces etc. for
some (classes) of matrices may be carried out.

• How can we characterize the p-eigenvectors of further 2× 2 matrices? Is
a full description for R2×2 possible?

• Are there any further p-eigenvectors for general diagonal matrices not
stated in Theorem 1?

• The existence and construction problem of non-trivial p-eigenvectors for
general matrices of Rn×n (n ≥ 2). May an analytic form of non-trivial
p-eigenvectors exist, or only numerical estimation can be given?

• We restricted the discussion to real valued matrices and vectors. What
can be stated about the generalization to complex numbers?

• Is the resemblance in Figure 4 to the Szegő curve [5, 14] just by chance,
or could any relations be found?

• Would p-eigensets be always composed of discrete directions?
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Based on our observations, we make the following conjectures.

Conjecture 1. Every A ∈ R2×2 invertible matrix has exactly 4 distinct
p-eigendirections (including trivial ones).

Conjecture 2. Every A ∈ Rn×n (n ≥ 3) invertible matrix has (non-trivial)
p-eigendirections.

Furthermore we mention the following possible directions of further inves-
tigations.

• Examine special classes of matrices (e.g. orthogonal, diagonalizable, sym-
metric, projection).

• We already have some basic graphics and observations in R3. Aside theo-
retical questions, this also leads to the problem of proper visualization of
induction surfaces, possibly connected to the Thomson problem [6, 15].
This problem is concerned with the optimal constallation of a number of
particles with equal charge on the unit sphere. As the usual parametriza-
tion of the sphere provides varying density of discretization points along
the surface, visualization of induction surfaces utilizing (approximate)
solutions of the Thomson problem may have some advantages.

• May these questions be further generalized to the case of infinite dimen-
sional (e.g. integral) operators? More specific questions may arise in case
of Fourier, Gabor or wavelet transforms.

• Further classes of norms may be investigated.

• Inverse problem: could the elements of the matrix and the used param-
eter p be reconstructed given the induction curve/surface/manifold, or a
sampled subset of such an object.

• Application perspectives of these curves, functions e.g. in case of signal
processing and sound design are to be explored.

References

[1] Cadzow, J.A., Minimum l1, l2 and l∞ norm approximate solutions to an
overdetermined system of linear equations, Digital Signal Processing, 12
(2002), 524–560.



344 L. Lócsi
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