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Abstract. We give estimates for the magnitude of double Vilenkin–
Fourier coefficients of functions from generalized Hölder spaces, some
p-fluctuational spaces and bounded Λ-Γ-ϕ-fluctuation spaces. For Hölder
and p-fluctuational spaces we establish the sharpness of these estimates.
Also we establish relation between full and partial best approximations and
Watari–Efimov type inequality concerning partial best approximation and
partial modulus of continuity.

1. Inroduction

Vilenkin systems were defined in 1947 by N. Ya. Vilenkin [15] as the charac-
ter systems χ = {χn}∞n=0 of compact abelian groups G with the second axiom
of countability. He introduced a notion of function of bounded variation using
the ordering of these groups and proved the estimate O(1/n), n ∈ N, for the
n-th Fourier coefficient cn of such function with respect to χ, see [15, §3.22]. He
also estimated |cn| by the uniform modulus of continuity [15, §3.3]. N. Fine [3]
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et al considered Walsh, Chrestenson systems and the other ones which are
de-facto the particular cases of Vilenkin systems as function systems on [0, 1]
or [0, 1). Fine estimated Walsh–Fourier coefficients in terms of uniform and
L1-modulus of continuity [3, Theorems 4 and 5]. As well he obtained the
analogue of the Vilenkin’s result in the case of Walsh system for the usual
function of bounded variation (see [3, Theorem 6]). The main results concern-
ing estimates of Fourier-Walsh coefficients may be found in the monograph of
F. Schipp, W. R. Wade and P. Simon [12, Ch. 2, sect.2.1]. Also in sections
2.2 and 2.3 from [12] the best order of decreasing to zero of Fourier–Walsh
coefficients is discussed in the case of classical continuous and absolutely con-
tinuous functions. In 2008 B. L. Ghodadra and J. R. Patadia [6] proved several
theorems concerning Walsh–Fourier coefficients which are analogues of the cor-
responding trigonometric results due to M. Schramm and D. Waterman [13].
Recent results on Walsh–Fourier coefficients are obtained by K. N. Darji and
R. G. Vyas [2, 19]. The result of [19] using double Walsh system and Λ1-Λ2-
ϕ-variation (cf. with the notion of Λ-Γ-ϕ-fluctuation in Sect.2) is generalized
in our Theorem 5.3.

C. W. Onneweer and D. Waterman [10] used the notion of bounded fluctua-
tion and its generalization to study the uniform convergence of Vilenkin–Fourier
series on groups. These notions may be used also for the function defined on
[0, 1). For example, in [16, 17] p-fluctuation and fluctuational moduli of con-
tinuity were applied to study the absolute convergence of Vilenkin–Fourier
series. The main aim of the present paper is to obtain the upper estimates for
Vilenkin–Fourier coefficients of the functions from generalized Hölder classes
and of functions with the finite generalized fluctuation. Also we study the
sharpness of these estimates in the cases of Hölder spaces and p-fluctuational
spaces.

The method used in section 5 for bounds of Vilenkin–Fourier coefficients
presuppose that the generating sequence of Vilenkin system is bounded. There
is a great difference between such systems with bounded and unbounded gen-
erating sequences. In the last case the (C, 1)-means of Vilenkin–Fourier series
for a continuous function may be divergent in different senses (see more in [5]).
We note two recent papers of G. Gát and U. Goginava [4] and [5], where the
convergence of double Vilenkin–Fourier sums and double Vilenkin–Fejér means
is studied in the unbounded case.

Conversely, the results of section 4 are valid in both bounded and unbounded
case. There are well known C. Watari – A.V. Efimov results (see [12, Ch. 5,
Theorem 2] in the case of Walsh system and [7, § 10.5] in the general case)
about equivalence of best approximation by Vilenkin polynomials and modulus
of continuity defined by generalized translation (see the next section). So called
partial best approximations for functions of several variables (see, e.g., [14, sect.
2.2.6]) are applied in direct and inverse theorems of approximation (see, e.g.,
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[14, sect. 6.3]). We prove an analogue of Watari–Efimov theorem for partial
best approximations and modulus of continuity connected with Vilenkin system
and estimate the full best approximation by partial ones.

2. Definitions

Let P = {pn}∞n=1 be a sequence of natural numbers such that pn ≥ 2 for all
n ∈ N = {1, 2, . . . }. We set by definition m0 = 1, mn = pnmn−1, n ∈ N. Each
x ∈ [0, 1) has an expansion

(2.1) x =

∞∑
n=1

xn/mn, xn ∈ Z ∩ [0, pn).

The expansion (2.1) is unique if for x = k/mj , k, j ∈ N, 0 < k < mj , we take
the series with a finite number of xn �= 0. If k ∈ Z+ = {0, 1, 2, . . .} is written
in the form k =

∑∞
j=1 kjmj−1, kj ∈ Z ∩ [0, pj), and x has the expansion (2.1),

then by definition χk(x) = exp
(
2πi

∑∞
j=1 xjkj/pj

)
. The system {χk}∞k=0 is

orthonormal and complete in L1[0, 1) (see [7, §1.5 and 2.8]). It is usually called
a Vilenkin system.

The system {χk(x)χl(y)}∞k,l=0 is also orthonormal and complete in L1[0, 1)2.

For f ∈ L1[0, 1)2 we define Vilenkin–Fourier coefficients and rectangular Vilen-
kin–Fourier sums by

f̂(m,n) =

1∫

0

1∫

0

f(x, y)χm(x)χn(y) dx dy, m, n ∈ Z+,

and

Sm,n(f)(x, y) =
m−1∑
j=0

n−1∑
k=0

f̂(j, k)χj(x)χk(y), m, n ∈ N.

Let G(P) be the group consisting of all sequences of type x̃ = (x1, x2, . . .),
xj ∈ Z∩[0, pj), with addition x̃⊕ỹ = z̃, where zj = xj+yj(mod pj), j ∈ N. The
inverse operation x̃� ỹ is defined similarly. The mapping λP(x̃) =

∑∞
j=1 xj/mj

is not bijective since the elements of the type

(2.2) x = k/ml, k, l ∈ N, k < ml,

have two different prototypes. Let us introduce the inverse mapping λ−1
P . For

x with the representation (2.2) we set xj = [mjx](mod pj), j ∈ N. Then
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λ−1
P (x) = (x1, . . . , xl, 0, 0, . . .). For other x ∈ [0, 1) there exists the unique

element x̃ ∈ G(P) with the property λP(x̃) = x and λ−1
P (x) = x̃. Let us

define a generalized distance ρ(x, y) = λP(λ
−1
P (x) � λ−1

P (y)) and an addition
x ⊕ y = λP(λ

−1
P (x) ⊕ λ−1

P (y)) on [0, 1). The result of this addition is not
defined if λ−1

P (x) ⊕ λ−1
P (y) = z̃ where zj = pj − 1 for all j starting from some

number. It is easy to see that · ⊕ y is defined a.e. on [0, 1] if y is fixed.
Moreover, x ⊕ 1/mk+1, k ∈ Z+, is defined for all x ∈ [0, 1). Finally, we note
that ρ(x⊕ 1/mk+1, x) < 1/mk.

It is also known that

(2.3) χn(x⊕ y) = χn(x)χn(y), χn(x� y) = χn(x)χn(y), n ∈ Z+,

for almost all y ∈ [0, 1) if x ∈ [0, 1) is fixed.

For 1 ≤ p < ∞ and f ∈ Lp[0, 1)2 we define two discrete moduli of continuity

ω∗
rs(f)p = sup{‖f(·⊕h, ·⊕τ)−f(·, ·)‖p : h ∈ [0,m−1

r ), τ ∈ [0,m−1
s )}, r, s ∈ Z+,

and

ωrs(f)p = sup{‖f(·⊕h, ·⊕τ)−f(·⊕h, ·)−f(·, ·⊕τ)+f(·, ·)‖p : h ∈ Ur, τ ∈ Us},

where ‖f‖p =
( ∫ 1

0

∫ 1

0
|f(x, y)|p dx dy

)1/p
, r, s ∈ Z+, Ur = [0,m−1

r ). A mea-
surable function f(x, y) belongs to C∗[0, 1)2 = C∗(P, [0, 1)2) if for any ε > 0
there exist δ1 > 0, δ2 > 0 such that for any (x1, y1), (x2, y2) ∈ [0, 1)2 such that
ρ(x1, x2) < δ1 and ρ(y1, y2) < δ2 the inequality |f(x1, y1) − f(x2, y2)| < ε is
fulfilled. The space C∗[0, 1)2 with uniform norm ‖f‖∞ = supx,y∈[0,1) |f(x, y)|
is a Banach space. Also we may consider this space as the completion of the
space of polynomials with respect to the system {χk(x)χl(y)}∞k,l=0. We define

two discrete moduli of continuity in C∗[0, 1)2 for r, s ∈ Z+ as follows

ω∗
rs(f)∞ = sup{|f(x1, y1)− f(x2, y2)| : ρ(x1, x2) < m−1

r , ρ(y1, y2) < m−1
s },

and

ωrs(f)∞ = sup{|f(x1, y1)− f(x2, y1)− f(x1, y2) + f(x2, y2)|},

where sup is taken over all x1, x2, y1, y2 with properties ρ(x1, x2) < m−1
r ,

ρ(y1, y2) < m−1
s . If Pm,n = {f ∈ L1[0, 1)2 : f̂(j, k) = 0, j ∈ [0,m − 1],

k ∈ [0, n − 1]}, f ∈ Lp[0, 1)2, 1 ≤ p < ∞, or f ∈ C∗[0, 1)2 and p = ∞, then
Emn(f)p = inf{‖f − g‖p : g ∈ Pmn} is the best approximation of orders m,n
for f . If ω = {ωn}∞n=0 and β = {βn}∞n=0 are decreasing to zero sequences, one
can define the space Hω,β

p = {f ∈ Lp[0, 1)2 : ωr,s(f)p ≤ Cωrβs, r, s ∈ Z+} in
the case 1 ≤ p < ∞ and similarly in the case f ∈ C∗[0, 1)2, p = ∞. Here C is
independent of r and s.
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Further we consider the sets of intervals Inj = [(j − 1)/mn, j/mn), n ∈ Z+,
j ∈ [1,mn]∩Z. If f is bounded on [0, 1), its oscillations osc(f, Inj ) = sup{|f(x)−
−f(y)| : x, y ∈ Inj } are finite. Correspondingly, for a bounded on [0, 1)2 func-
tion f we consider

osc(f, Irj ×Isk) = sup{|f(x, y)−f(u, y)−f(x, v)+f(u, v)| : x, u ∈ Irj , y, v ∈ Isk}.

Let Λ = {λn}∞n=1 and Γ = {γn}∞n=1 be a nondecreasing sequence of positive
numbers such that limn→∞ Λn = limn→∞ Γn = ∞, where Λn :=

∑n
i=1 λ

−1
i ,

Γn =
∑n

i=1 γ
−1
i , Wn be the set of all rearrangements of {1, 2, . . . ,mn}.

Let ϕ(x) be a convex function on [0,∞) such that

ϕ(0) = 0, lim
x→0+0

ϕ(x)/x = 0, lim
x→+∞

ϕ(x)/x = +∞.

Then ϕ(x) is strictly increasing and continuous on [0,∞) (see [8, §1]). Such
functions ϕ are called N -functions.

Let Λ, Γ and Wn be as above, ϕ be a N -function. A bounded on [0, 1)2

measurable function f belongs to the class ΛΓFlϕ[0, 1)
2 of bounded Λ-Γ-ϕ-

fluctuation functions if

FlΛ,Γ,ϕ(f) = sup
r,s∈Z+

sup
{lj},{ki}




mr∑
j=1

ms∑
i=1

ϕ(osc(f, Irlj × Iski
))

λjγi


 ,

where {lj}mr
j=1 ∈ Wr, {ki}ms

i=1 ∈ Ws, is finite. Similar variational definition for
ϕ(t) = t was suggested by D. Waterman [20].

In the case ϕ(t) = tp, 1 < p < ∞, we can give the following version of above
definition. For r, s ∈ Z+ we define a p-fluctuational modulus of continuity

V [2]
p (f)r,s = sup

k≥r
sup
l≥s




mk∑
i=1

ml∑
j=1

oscp(f, Iki × I lj)




1/p

.

If Fl
[2]
p (f) = V

[2]
p (f)0,0 < ∞, then f ∈ Flp[0, 1)

2. The space Flp[0, 1)
2 is

Banach with the norm ‖f‖Flp = ‖f‖∞ + Fl
[2]
p (f) (see a similar proof in [16]).

If limr,s→∞ V
[2]
p (f)r,s = 0, i.e. for any ε > 0 there exist M,N such that for

r ≥ M , s ≥ N the inequality V
[2]
p (f)r,s < ε holds, then f belongs to the space

CFlp[0, 1)
2. For p = 1 we introduce Fl

[2]
1 (f) and Fl1[0, 1)

2 as above.

Let us consider the partial moduli of smoothness in the case 1 ≤ p < ∞

ω(1)
r (f)p = sup

h∈Ir
1




1∫

0

1∫

0

|f(x⊕ h, y)− f(x, y)|p dy dx




1/p

,
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ω(2)
s (f)p = sup

h∈Is
1




1∫

0

1∫

0

|f(x, y ⊕ h)− f(x, y)|p dx dy




1/p

, r, s ∈ Z+.

For p = ∞ and f ∈ C∗[0, 1)2 we consider for r, s ∈ Z+

ω(1)
r (f)∞ = sup

y∈[0,1)

sup{|f(x1, y)− f(x2, y)| : x1, x2 ∈ [0, 1), ρ(x1, x2) < m−1
r },

ω(2)
r (f)∞ = sup

x∈[0,1)

sup{|f(x, y1)− f(x, y2)| : y1, y2 ∈ [0, 1), ρ(y1, y2) < m−1
r }.

Correspondingly, we may consider partial p-fluctuational moduli of smooth-
ness

V (1)
p (f)n = sup

y∈[0,1)

sup
k≥n

(
mk∑
i=1

oscp(f(·, y), Iki )

)1/p

, n ∈ Z+,

and, similarly, V
(2)
p (f)n. We say that a bounded on [0, 1)2 function f belongs to

PV F lp[0, 1)
2 (here PV means ”partial variables”), if both quantities Fl

(1)
p (f) =

= V
(1)
p (f)0 and Fl

(2)
p (f) = V

(2)
p (f)0 are finite. Also we introduce partial best

approximation

Ek,∞(f)p = inf




∥∥∥∥∥f(x, y)−
k−1∑
j=0

aj(y)χj(x)

∥∥∥∥∥
p


 , k ∈ N,

where inf is taken over all measurable functions aj on [0, 1) and f belongs to
Lp[0, 1)2 for 1 ≤ p < ∞ or f ∈ C∗[0, 1)2 for p = ∞. The quantity E∞,l(f)p,
l ∈ N, is defined in a similar way. For f ∈ L1[0, 1)2 and k, l ∈ N we consider

Sk,∞(f)(x, y) =
k−1∑
j=0

1∫

0

f(u, y)χj(u) duχj(x)

and S∞,l(f)(x, y) in a similar way.

Further C and Ci are constants different in distinct cases.

3. Auxiliary lemmas

Lemma 3.1. Let mk ≤ n < mk+1, k ∈ Z+. Then χn(x) is constant on all
Ik+1
j , 1 ≤ j ≤ mk+1 and for any 1 ≤ j ≤ mk the equality

∫
Ik
j
χn(x) dx = 0

holds.

For the proof of Lemma 3.1 see [7, §1.5, (1.5.13) and (1.5.18)].
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Lemma 3.2. (i) Let 1 < p < ∞, f ∈ PV F lp[0, 1)
2. Then

ω(i)
n (f)p ≤ m−1/p

n V (i)
p (f)n, n ∈ Z+, i = 1, 2.

(ii) Let f ∈ CFlp[0, 1)
2, 1 < p < ∞. Then for r, s ∈ Z+ we have

ωr,s(f)p ≤ (mrms)
−1/pV [2]

p (f)r,s.

Proof. Part (i) of Lemma 3.2 is established similar to [17, Lemma 9]. For the
part (ii) we use the notation ∆f(x, y;h, t) = f(x ⊕ h, y ⊕ t) − f(x ⊕ h, y) −
−f(x, y ⊕ t) + f(x, y) and the fact that x ∈ Irk , h ∈ Ir1 implies x ⊕ h ∈ Irk for
a.e. x to obtain

ωr,s(f)p = sup
h∈Ir

1 ,t∈Is
1




1∫

0

1∫

0

|∆f(x, y;h, t)|p dx dy




1/p

=

= sup
h∈Ir

1 ,t∈Is
1




mr∑
k=1

ms∑
l=1

∫

Ir
k

∫

Is
l

|∆f(x, y;h, t)|p dy dx




1/p

≤

≤

(
mr∑
k=1

ms∑
l=1

oscp(f, Irk × Isl )m
−1
r m−1

s

)1/p

≤ (mrms)
−1/pV [2]

p (f)r,s. �

Remark 3.1. For f ∈ Fl1[0, 1)
2 and r, s ∈ Z+ by the same method as in the

proof of Lemma 2 we see that ωr,s(f)1 ≤ (mrms)
−1Fl

[2]
1 (f).

Lemma 3.3 is proved in the case pi ≡ 2 for double Walsh system by F. Móricz
in [9] and for multiple Vilenkin system in [18].

Lemma 3.3. Let 1 ≤ p < ∞, f ∈ Lp[0, 1)2, or p = ∞, f ∈ C∗[0, 1)2,
r, s ∈ Z+. Then

2−1ω∗
r,s(f)p ≤ Emr,ms

(f)p ≤ ‖f − Smr,ms
(f)‖p ≤ ω∗

r,s(f)p.

Lemma 3.4. Let r, s ∈ Z+, 1 ≤ j ≤ mr, 1 ≤ i ≤ ms, x ∈ Irj , y ∈ Isi . Then

Smr,∞(f)(x, y) = mr

∫

Ir
j

f(u, y) du, S∞,ms(f)(x, y) = ms

∫

Is
i

f(x, v) dv.

The proof of Lemma 3.4 is similar to the one-dimensional case and uses the
formula

∑mr−1
j=0 χj(x) = mrXIr

1
(x), where XE is the indicator of a set E (see

[7, § 1.5, (1.5.21)]).
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Lemma 3.5. Let r, s ∈ Z+, 1 ≤ p < ∞ and f ∈ Lp[0, 1)2 or p = ∞ and
f ∈ C∗[0, 1)2. Then

‖Smr,∞(f)‖p ≤ ‖f‖p, ‖S∞.ms
(f)‖p ≤ ‖f‖p.

Proof. By Lemma 3.4 and Hölder inequality we have for 1 ≤ p < ∞

1∫

0

1∫

0

|Smr,∞(f)(x, y)|p dx dy =

1∫

0

mr∑
j=1

∫

Ir
j

∣∣∣mr

∫

Ir
j

f(u, y) du
∣∣∣
p

dx dy ≤

≤ mp
r

1∫

0

mr∑
j=1

∫

Ir
j

∫

Ir
j

|f(u, y)|p du(m−1
r )p(1−1/p) dx dy =

=

1∫

0

mr∑
j=1

∫

Ir
j

|f(u, y)|p du dy = ‖f‖pp

In the case p = ∞ we easily obtain from Lemma 3.4

‖Smr,∞(f)‖∞ ≤ mr max
1≤j≤mr

∫

Ir
j

‖f‖∞ du = ‖f‖∞.

The second inequality of Lemma 3.5 may be proved in a similar manner. �

Lemma 3.6. If 1 ≤ p < ∞ and f ∈ Lp[0, 1)2 or p = ∞ and f ∈ C∗[0, 1)2,
k ∈ [mr,mr+1), r ∈ Z+, l ∈ [ms,ms+1), s ∈ Z+, then

|f̂(k, l)| ≤ Ek,l(f)p ≤ ω∗
r,s(f)p.

Proof. Let g ∈ Pkl be such that ‖f − g‖p = Ek,l(f)p. Then by the Hölder
inequality and orthogonality of {χi}∞i=0 we have

|f̂(k, l)| =

∣∣∣∣∣
1∫

0

1∫

0

(f(x, y)− g(x, y))χk(x)χl(y) dx dy

∣∣∣∣∣ ≤ ‖f − g‖p = Ek,l(f)p.

The second inequality of Lemma follows from the decreasing of Ek,l(f)p in k
and l and Lemma 3.3. �
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4. Approximation theorems

Theorem 4.1. Let 1 ≤ p < ∞ and f ∈ Lp[0, 1)2 or f ∈ C∗[0, 1)2 and p = ∞.
Then the inequalities

(4.1) Emr,∞(f)p ≤ ‖f − Smr,∞(f)‖p ≤ ω(1)
r (f)p ≤ 2Emr,∞(f)p

and

(4.2) E∞,ms(f)p ≤ ‖f − S∞,ms(f)‖p ≤ ω(2)
s (f)p ≤ 2E∞,ms(f)p

are valid for all r, s ∈ Z+.

Proof. The left inequality from (4.1) is obvious. By Lemma 4 and Hölder
inequality we have in the case 1 ≤ p < ∞

‖f − Smr,∞(f)‖p =

(
mr∑
j=1

1∫

0

∫

Ir
j

|f(x, y)− Smr,∞(f)(x, y)|p dx dy

)1/p

≤

≤

( 1∫

0

mr∑
j=1

∫

Ir
j

(
mr

∫

Ir
j

|f(x, y)− f(u, y)| du

)p

dx dy

)1/p

≤

≤

( 1∫

0

mr∑
j=1

∫

Ir
j

mp
r

∫

Ir
j

|f(x, y)− f(u, y)|p dum1−p
r dx dy

)1/p

=

=

( 1∫

0

mr∑
j=1

∫

Ir
j

∫

Ir
1

|f(x, y)− f(x⊕ h, y)|p dhmr dx dy

)1/p

=

(4.3) =

( 1∫

0

∫

Ir
1

1∫

0

|f(x, y)− f(x⊕ h, y)|p dxmr dh dy

)1/p

≤ ω(1)
r (f)p.

In the case p = ∞ we use the inequality |f(x, y) − f(u, y)| ≤ ω
(1)
r (f)∞ for

x, u ∈ Irj . Thus, the second inequality from (4.1) is proved. Finally, let ε > 0

and gr be a polynomial of type
∑mr−1

j=0 aj(y)χj(x), where aj be measurable
on [0, 1) and ‖f − gr‖p < Emr,∞(f)p + ε. If h ∈ Ir1 , then by Lemma 3.1
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gr(x, y) = gr(x ⊕ h, y) for almost all x ∈ [0, 1). Therefore, for 1 ≤ p < ∞ we
obtain

ω(1)
r (f)p = sup

h∈Ir
1




1∫

0

1∫

0

|f(x⊕ h, y)− f(x, y)|p



1/p

=

= sup
h∈Ir

1

‖f(x⊕ h, y)− gr(x⊕ h, y)− f(x, y) + gr(x, y)‖p ≤ 2‖f − gr‖p.

Since 2‖f − gr‖p < 2Emr,∞(f)p + 2ε and ε > 0 is arbitrary, we obtain the last
inequality from (4.1) in the case p ∈ [1,∞). The case p = ∞ is similar to the
proved one. The inequality (4.2) is established in the same manner. �

Theorem 4.2. Let 1 ≤ p < ∞ and f ∈ Lp[0, 1)2 or p = ∞ and f ∈ C∗[0, 1)2,
r, s ∈ Z+. Then

Emr,ms(f)p ≤ 2Emr,∞(f)p + 3E∞,ms(f)p.

Proof. Let ε > 0 and gs be a polynomial of type
∑ms−1

j=0 bj(x)χj(y) such that
bj(x) be measurable on [0, 1) and ‖f − gs‖p < E∞,ms

(f)p + ε. By virtue of
Theorem 4.1 and properties of Smr,∞ we have

Emr,ms(f)p ≤ Emr,ms(f − gs)p + Emr,ms(gs)p ≤

≤ ‖f − gs‖p + ‖gs − Smr,∞(gs)‖p ≤ E∞,ms
(f)p + ε+ 2Emr,∞(gs)p ≤

≤ E∞,ms
(f)p + ε+ 2Emr,∞(gs − f)p + 2Emr,∞(f)p ≤ E∞,ms

(f)p + ε+

(4.4) + 2‖gs − f‖p + 2Emr,∞(f)p ≤ 3E∞,ms(f)p + 2Emr,∞(f)p + 3ε.

Since ε > 0 is arbitrary, we obtain the inequality of Theorem. �

Remark 4.1. Similar to (4.4) we can obtain Emr,ms
(f)p ≤ 3Emr,∞(f)p +

+2E∞,ms
(f)p. Summing this inequality with the inequality of Theorem 4.2

yields

Emr,ms
(f)p ≤ 5

2
(Emr,∞(f)p + E∞,ms

(f)p).

It is interesting to find the best constant in last inequality.

Corollary 4.1. (i) Let 1 ≤ p < ∞ and f ∈ Lp[0, 1)2 or p = ∞ and f ∈
∈ C∗[0, 1)2. Then

Emr,ms(f)p ≤ 3(ω(1)
r (f)p + ω(2)

s (f)p), r, s ∈ Z+.

(ii) Let 1 < p < ∞ and f ∈ PV F lp[0, 1)
2. Then

Emr,ms(f)p ≤ 3(m−1/p
r V (1)

p (f)r +m−1/p
s V (2)

p (f)s), r, s ∈ Z+.
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Proof. Part (i) of Corollary 4.1 may be deduced from Theorems 4.1 and 4.2,
while the part (ii) follows from (1) and Lemma 3.2 (i). �

Corollary 4.2. (i) Under conditions of Corollary 4.1 (i) we have for k ∈
∈ [mr,mr+1), r ∈ Z+, l ∈ [ms,ms+1), s ∈ Z+,

|f̂(k, l)| ≤ 3(ω(1)
r (f)p + ω(2)

s (f)p).

(ii) Under conditions of Corollary 4.1 (ii) we have for k ∈ [mr,mr+1), r ∈ Z+,
l ∈ [ms,ms+1), s ∈ Z+,

|f̂(k, l)| ≤ 3(m−1/p
r Fl(1)p (f) +m−1/p

s Fl(2)p (f)).

Both assertions of Corollary 4.2 follows from Corollary 4.1 and Lemma 3.6.

5. Estimates of Fourier coefficients

Theorem 5.1. Let P = {pn}∞n=1 is bounded by N . Then for k ∈ [mr,mr+1),
l ∈ [ms,ms+1), r, s ∈ Z+, we have

|f̂(k, l)| ≤ C

1∫

0

1∫

0

|∆r,sf(x, y)| dx dy,

where ∆r,sf(x, y) = f(x⊕1/mr+1, y⊕m−1
s+1)−f(x⊕m−1

r+1, y)−f(x, y⊕m−1
s+1)+

f(x, y) and C depends on N .

Proof. It is known that for fa,b(x, y) = f(x⊕ a, y⊕ b) the equality f̂a,b(k, l) =

= χk(a)χl(b)f̂(k, l) holds. Therefore,

(5.1)

1∫

0

1∫

0

∆r,sf(x, y)χk(x)χl(y) dx dy =

= (χk(m
−1
r+1)− 1)(χl(m

−1
s+1)− 1)f̂(k, l).

Since k ∈ [mr,mr+1), we can write k = amr + k′, where k′ ∈ [0,mr) ∩ Z and
a ∈ [1, pr+1 − 1] ∩ Z. By Lemma 3.1 and definition we have

χk(m
−1
r+1) = χamr (m

−1
r+1)χk′(m−1

r+1) = χamr (m
−1
r+1)χk′(0) = exp(2πia/pr+1)
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and

|χk(m
−1
r+1)− 1| ≥ | exp(2πi/pr+1)− 1| = 2 sin(π/pk+1) ≥ 2 sin(π/N).

Similar inequality is valid for |χl(m
−1
s+1)− 1|. From (5.1) we obtain

|f̂(k, l)| ≤ (2 sin(π/N))−2

1∫

0

1∫

0

|∆r,sf(x, y)| dx dy. �

Theorem 5.2. Let P be bounded, ω = {ωn}∞n=0 and β = {βn}∞n=1 be decreasing
to zero sequences, 1 ≤ p ≤ ∞.

(i) If f(x, y) ∈ Hω,β
p , k ∈ [mr,mr+1), l ∈ [ms,ms+1), r, s ∈ Z+, then

|f̂(k, l)| ≤ Cωrβs, where C is independent of k and l.

(ii) Let ω and β satisfy the Bary condition (see, e.g, [1, Introductory Mate-
rial, § 4, (4.1)])

(5.2)
∞∑

k=n

ωk = O(ωn),

∞∑
k=n

βk = O(βn), n ∈ Z+.

Then there exists a function fω,β ∈ Hω,β
p such that |f̂ω,β(mr,ms)| = ωrβs.

Proof. (i) Since ‖ · ‖1 ≤ ‖ · ‖p ≤ ‖ · ‖∞, we obtain

(5.3) ωr,s(f)1 ≤ ωr,s(f)p ≤ ωr,s(f)∞, r, s ∈ Z+.

From Theorem 5.1 we deduce that for k ∈ [mr,mr+1), l ∈ [ms,ms+1), r, s ∈
∈ Z+, the inequality

|f̂(k, l)| ≤ C1ωr,s(f)1 ≤ C1ωr,s(f)p ≤ C2ωrβs

holds.

(ii) Let us consider the function

(5.4) fω,β(x, y) =

∞∑
r=0

∞∑
s=0

ωrβsχmr (x)χms(y).

Since ω and β satisfy the Bary condition (5.2), in particular, we have

∞∑
r=0

ωr < ∞,
∞∑
s=0

βs < ∞, andmorover
∞∑
r=0

∞∑
s=0

ωrβs < ∞.

Thus, the right-hand side of (5.4) converges absolutely and uniformly to
P-continuous function fω,β . If ρ(x1, x2) < m−1

r , ρ(y1, y2) < m−1
r , then

|(χmk
(x1)− χmk

(x2))(χml
(y1)− χml

(y2))| = 0
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for k < r or l < s by Lemma 3.1. Therefore, (5.4) implies

|fω,β(x1, y1)− fω,β(x1, y2)− fω,β(x2, y1) + fω,β(x2, y2)| ≤

≤
∞∑
k=r

∞∑
l=s

ωkβl|χmk
(x)χml

(y)| =
∞∑
k=r

ωk

∞∑
l=s

βl ≤ C3ωrβs

and by (5.3) we have ωr,s(fω,β)p ≤ ωr,s(fω,β)∞ ≤ C3ωrβs. On the other hand,

f̂ω,β(mr,ms) = ωrβs. �

Corollary 5.1. (i) Let P be bounded and 1 ≤ p < ∞, f ∈ Flp[0, 1)
2. Then

for k, l ∈ N the inequality |f̂(k, l)| ≤ C(kl)−1/p holds.

(ii) There exists f0 ∈ Flp[0, 1)
2 such that |f̂0(k, l)| = (kl)−1/p for k = mr,

l = ms, r, s ∈ Z+.

Proof. (i) By Lemma 3.2(ii) we have ωr,s(f)p ≤ Fl
[2]
p (f)(mrms)

−1/p and for
k ∈ [mr,mr+1), l ∈ [ms,ms+1), r, s ∈ Z+, by Theorem 5.2(i) we obtain

|f̂(k, l)| ≤ C1(mrms)
−1/p ≤ C1N

2/p(mr+1ms+1)
−1/p ≤ C2(kl)

−1/p,

where N is an upper bound for P.

(ii) Let ωr = βr = m
−1/p
r . Then ω = {ωi}∞i=0 and β = {βi}∞i=0 satisfy the

Bary condition (5.2) and by Theorem 5.2(ii) the function

f0(x, y) = fω,β(x, y) =
∞∑
r=0

∞∑
s=0

(mrms)
−1/pχmr

(x)χms
(y)

belongs to Hω,β
∞ . Then osc(f0, I

r
i × Isj ) ≤ C3(mrms)

−1/p and for r, s ∈ Z+




mr∑
i=1

ms∑
j=1

oscp(f0, I
r
i × Isj )




1/p

≤ C3




mr∑
i=1

ms∑
j=1

(mrms)
−1




1/p

= C3 < ∞.

Thus, f0 ∈ Flp[0, 1)
2 and satisfies all assertions of Corollary. �

Corollary 5.2. (i) Let P be bounded, 1 < p < ∞, f ∈ CFlp[0, 1)
2, ω =

= {ωn}∞n=0 and β = {βn}∞n=1 be decreasing to zero sequences, and V
[2]
p (f)r,s ≤

≤ Cωrβs, r, s ∈ Z+. Then for k ∈ [mr,mr+1), l ∈ [ms,ms+1), r, s ∈ Z+, the

relation |f̂(k, l)| = O((mrms)
−1/pωrβs) holds.

(ii) There exists f0 ∈ CFlp[0, 1)
2, 1 < p < ∞, such that V

[2]
p (f0)r,s ≤

≤ Cωrβs, r, s ∈ Z+, and |f̂0(mr,ms)| = (mrms)
−1/pωrβs, r, s ∈ Z+.
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Proof. (i) By the proof of Theorem 5.2 and Lemma 3.2 we have

|f̂(k, l)| ≤ C1ωrs(f)p ≤ C1(mrms)
−1/pV [2]

p (f)r,s ≤ C2(mrms)
−1/pωrβs

for k ∈ [mr,mr+1), l ∈ [ms,ms+1), r, s ∈ Z+.

(ii) It is easy to see that {m−1/p
n ωn}∞n=0 and {m−1/p

n βn}∞n=0 satisfy the Bary
condition (5.2), e.g.

∞∑
k=n

m
−1/p
k ωk ≤ ωn

∞∑
k=n

m
−1/p
k ≤ C3ωnm

−1/p
n , n ∈ Z+.

By Theorem 5.2(ii) the function

f0(x, y) =
∞∑
r=0

∞∑
s=0

(mrms)
−1/pωrβsχmr

(x)χms
(y)

satisfies the inequality ωk,l(f0)∞ ≤ C4ωkβl(mkml)
−1/p, k, l ∈ Z+. Hence,

(5.5)

V [2]
p (f)r,s = sup

k≥r,l≥s

(
mk∑
i=1

ml∑
j=1

oscp(f0, I
k
i × I lj)

)1/p

≤

≤ C4 sup
k≥r,l≥s

(
mk∑
i=1

ml∑
j=1

m−1
k m−1

l ωp
kβ

p
l )

)1/p

= C4ωrβs.

Thus, we have f0 ∈ CFlp[0, 1)
2 and (5.5) is valid, i.e. f0 is a required function.

�

Theorem 5.3. Let ϕ be a N -function, P = {pj}∞j=1 be bounded and
Λ = {λi}∞i=1, Γ = {γi}∞i=1 be increasing sequences of positive numbers such
that limn→∞ Λn = limn→∞ Γn = ∞, where Λn =

∑n
k=1 λ

−1
k , Γn =

∑n
k=1 γ

−1
k .

Then for k ∈ [mr,mr+1), l ∈ [ms,ms+1), r, s ∈ Z+, the inequality

|f̂(k, l)| ≤ C(f,P)ϕ−1(Λ−1
k Γ−1

l )

holds.

Proof. Let k ∈ [mr,mr+1), l ∈ [ms,ms+1), r, s ∈ Z+, and P be bounded by

N . Using the property
∫ 1

0
g(x ⊕ a) dx =

∫ 1

0
g(x) dx (see [7, § 2.1] in the case

pi ≡ 2) for g ∈ L1[0, 1) and Theorem 5.1 we obtain

(5.6) |f̂(k, l)| ≤ C1

1∫

0

1∫

0

|∆r,sf(x⊕ i/mr, y ⊕ j/ms)| dx dy,
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where i ∈ [0,mr)∩Z, j ∈ [0,ms)∩Z and ∆r,sf(x, y) is defined in Theorem 5.1.
It is easy to see that x⊕ i/mr ⊕ 1/mr+1 and x⊕ i/mr always exist and belong
to the same interval Irk , while for different i the corresponding numbers k are
also different. Denoting ∆r,sf(x ⊕ i/mr, y ⊕ j/ms) by gij(x, y) and applying
the integral Jensen inequality we deduce from (5.6) that for C2 > 0

(5.7)

ϕ(C2|f̂(k, l)|) ≤ ϕ


C1C2

1∫

0

1∫

0

|gij(x, y)| dx dy


 ≤

≤
1∫

0

1∫

0

ϕ(C1C2|gij(x, y)|) dx dy.

Multiplying both sides of (5.7) by λ−1
i+1γ

−1
j+1 and summing new inequalities over

i = 0, 1, . . . ,mr − 1 and j = 0, 1, . . . ,ms − 1 we obtain

ΛmrΓmsϕ(C2|f̂(k, l)|) ≤
1∫

0

1∫

0

mr−1∑
i=0

ms−1∑
j=0

ϕ(C1C2|gij(x, y)|)
λi+1γj+1

dx dy ≤

≤ FlΛ,Γ,ϕ(C1C2f).

Since ϕ is convex and ϕ(0) = 0, for α ∈ (0, 1) we have ϕ(αx) ≤ αϕ(x).
Therefore, FlΛ,Γ,ϕ(C1C2f) ≤ 1 for sufficiently small C2 > 0, whence

C2|f̂(k, l)| ≤ ϕ−1(FlΛ,Γ,ϕ(C1C2f)Λ
−1
mr

Γ−1
ms

) ≤ ϕ−1(Λ−1
mr

Γ−1
ms

),

where C2 depends on f . It is known that ϕ−1 is subadditive, i.e. ϕ−1(a+ b) ≤
≤ ϕ−1(a) + ϕ−1(b), a, b ≥ 0 (see [8, § 1, (1.20)]). Also we have Λk ≤ Λmr+1 ≤
≤ NΛmr

and Γl ≤ NΓms
since {λ−1

i }∞i=1 and {γ−1
i }∞i=1 are decreasing. Thus,

we obtain

|f̂(k, l)| ≤ C−1
2 ϕ−1(Λ−1

mr
Γ−1
ms

) ≤ N2C−1
2 ϕ−1(Λ−1

k Γ−1
l ),

where N is a majorant for P. �
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