ON ADDITIVE ARITHMETICAL FUNCTIONS WITH VALUES IN TOPOLOGICAL GROUPS IV.

Imre Kátai and Bui Minh Phong (Budapest, Hungary)

Communicated by Jean-Marie De Koninck

(Received April 20, 2019; accepted June 9, 2019)

Abstract. We prove that if G is an additively written Abelian topological group with the translation invariant metric ρ and

$$\frac{1}{\log x} \sum_{n < x} \frac{\rho(\psi(n+1), \varphi(n))}{n} \to 0 \quad (x \to \infty),$$

where $\psi, \varphi : \mathbb{N} \to G$ are completely additive functions, then $\varphi(n) = \psi(n)$ $(\forall n \in \mathbb{N})$, and the extension $\varphi : \mathbb{R}_x \to G$ is a continuous homomorphism, where \mathbb{R}_x is the multiplicative group of positive real numbers. We also prove that if

$$\frac{1}{\log x} \sum_{n \le x} \frac{\rho(\psi([\sqrt{2}n]), \varphi(n) + A)}{n} \to 0 \quad (x \to \infty).$$

then $\varphi(n) = \psi(n) \quad (\forall n \in \mathbb{N})$, and the extension $\varphi = \psi : \mathbb{R}_x \to G$ is a continuous homomorphism, with $\psi(\sqrt{2}) = A$.

1. Notation

We shall use the following standard notation: \mathbb{N} = natural numbers, \mathbb{Q}_x = multiplicative group of positive rationals, \mathbb{Q} = additive group of rationals, \mathbb{R} = field of real numbers, \mathbb{R}_x multiplicative group of positive real

Key words and phrases: Topological group, continuous character, continuous homomorphism, completely multiplicative, completely additive.

²⁰¹⁰ Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64.

numbers, \mathbb{C} = field of complex numbers, \mathbb{T} = one dimensional circle group (torus). Let us consider them in the usual topology.

Let G be an Abelian group. A mapping $\varphi:\mathbb{N}\to G$ is completely additive, if

 $\varphi(nm) = \varphi(n) + \varphi(m) \quad (\forall n, m \in \mathbb{N}).$

Let \mathcal{A}_G^* be the set of completely additive functions.

If G is considered as a multiplicative (commutative) group, then the mapping $V : \mathbb{N} \to G$ satisfying the relation

$$V(nm) = V(n)V(m) \quad (\forall n, m \in \mathbb{N})$$

is called a completely multiplicative function. \mathcal{M}_G^* denotes the set of these functions.

We can extend the domain of φ and V to \mathbb{Q}_x by the relations

$$\varphi\left(\frac{m}{n}\right) = \varphi(m) - \varphi(n) \text{ and } V\left(\frac{m}{n}\right) = V(m)(V(n))^{-1}$$

uniquely.

Furthermore, the relations

$$\varphi(rs) = \varphi(r) + \varphi(s) \quad (\forall r, s \in \mathbb{Q}_x)$$

and

$$V(rs) = V(r)V(s) \quad (\forall r, s \in \mathbb{Q}_x)$$

hold.

2. Preliminary results

Let $\mathcal{M}^*_{\mathbb{T}}$ be the set of those completely multiplicative functions for which $f: \mathbb{N} \to \mathbb{T}$.

Lemma 1. ([8], [9]) If $f \in \mathcal{M}^*_{\mathbb{T}}$, $\Delta f(n) = f(n+1) - f(n) \to 0 \ (n \to \infty)$, then $f(n) = n^{i\tau}$, $(\tau \in \mathbb{R})$ for every $n \in \mathbb{N}$.

Lemma 2. ([6], [7]) If $f \in \mathcal{M}^*_{\mathbb{T}}$ and either

$$\frac{1}{x}\sum_{n\leq x} |\Delta f(n)| \to 0 \quad \text{as} \quad x\to\infty$$

or

$$\frac{1}{\log x} \sum_{n \le x} \frac{|\Delta f(n)|}{n} \to 0 \quad \text{as} \quad x \to \infty,$$

then $f(n) = n^{i\tau}$, $(\tau \in \mathbb{R})$ for every $n \in \mathbb{N}$.

From the result of [4], we have

Lemma 3. If $f, g \in \mathcal{M}^*_{\mathbb{T}}$ and either

$$\frac{1}{x}\sum_{n\leq x} |g(n+1)-f(n)|\to 0 \quad as \quad x\to\infty$$

or

$$\frac{1}{\log x} \sum_{n \le x} \frac{|g(n+1) - f(n)|}{n} \to 0 \quad as \quad x \to \infty,$$

then $f(n) = g(n) = n^{i\tau}$, $(\tau \in \mathbb{R})$ for every $n \in \mathbb{N}$.

Lemma 4. ([5]) If $f, g \in \mathcal{M}^*_{\mathbb{T}}$ and either

$$\frac{1}{\log x} \sum_{n \le x} \frac{|g([\sqrt{2}n]) - Af(n)|}{n} \to 0 \quad \text{as} \quad x \to \infty$$

then $f(n) = g(n) = n^{i\tau}$, $(\tau \in \mathbb{R})$ for every $n \in \mathbb{N}$, furthermore $A = g(\sqrt{2}) = 2^{\frac{i\tau}{2}}$.

Let now G be an Abelian topological group, $\varphi : \mathbb{Q}_x \to G$ be a homomorphism. We shall say that φ is continuous at the point 1, if $r_{\nu} \in \mathbb{Q}_x$, $r_{\nu} \to 1$ implies that

$$\varphi(r_{\nu}) \to 0.$$

Let \mathbb{R}_x be the multiplicative group of positive real numbers.

Lemma 5. ([1], [2]) Let G be an additively written closed Abelian topological group, $\varphi : \mathbb{Q}_x \to G$ be a homomorphism that is continuous at the point 1. Then its domain can be extended to \mathbb{R}_x by the relation

$$\varphi(\alpha) := \lim_{\substack{r_\nu \to \alpha \\ r_\nu \in \mathbb{Q}_x}} \varphi(r_\nu).$$

uniquely. The so obtained $\varphi:\mathbb{R}_x\to G$ is a continuous homomorphism, consequently

$$\varphi(\alpha\beta) = \varphi(\alpha) + \varphi(\beta) \quad \forall \alpha, \beta \in \mathbb{R}_x.$$

Lemma 6. ([3]) Let G be an additively written Abelian topological group with the translation invariant metric ρ . Let $\varphi \in \mathcal{A}_G^*$ such that

$$\frac{1}{\log x} \sum_{n \le x} \frac{\rho(\varphi(n+1), \varphi(n))}{n} \to 0 \quad (x \to \infty)$$

Then the extension $\varphi : \mathbb{R}_x \to G$ is a continuous homomorphism.

3. The theorems

Theorem 1. Let G be an additively written Abelian topological group with the translation invariant metric ρ . Let $\psi, \varphi \in \mathcal{A}_G^*$ such that

(3.1)
$$\frac{1}{\log x} \sum_{n \le x} \frac{\rho(\psi(n+1), \varphi(n))}{n} \to 0 \quad (x \to \infty).$$

Then $\varphi(n) = \psi(n)$ $(n \in \mathbb{N})$, and the extension $\varphi : \mathbb{R}_x \to G$ is a continuous homomorphism.

Theorem 2. Let G be as in Theorem 1. Assume that $\psi, \varphi \in \mathcal{A}_G^*$ and

$$\frac{1}{\log x} \sum_{n \le x} \frac{\rho(\psi([\sqrt{2}n]), \varphi(n) + A)}{n} \to 0 \quad (x \to \infty).$$

Then $\varphi(n) = \psi(n)$ $(n \in \mathbb{N})$, and the extension $\varphi : \mathbb{R}_x \to G$ is a continuous homomorphism. Furthermore $A = \psi(\sqrt{2})$.

Proof of Theorem 1. It is easy consequence of Lemma 3 and Lemma 6.

Let $\chi: G \to \mathbb{T}$ be any continuous character. Let

$$U(n) = \chi(\psi(n))$$
 and $V(n) = \chi(\varphi(n))$.

Since χ is a continuous character, we have

$$|U(n+1) - V(n)| \le C\rho(\psi(n+1), \varphi(n)),$$

and so, by (3.1)

$$\frac{1}{\log x} \sum_{n \le x} \frac{|U(n+1) - V(n)|)}{n} \to 0 \quad (x \to \infty),$$

which with Lemma 3 implies that U(n) = V(n), and so $\chi(\varphi(n)) = \chi(\psi(n))$ holds for every continuous character. Thus $\varphi(n) = \psi(n) \quad (\forall n \in \mathbb{N})$. Lemma 6 implies the theorem.

Proof of Theorem 2. Let χ, ψ, φ, U be as above. Then

$$U([\sqrt{2n}]) - \chi(A)V(n)| \le C\rho(\psi([\sqrt{2n}]), \varphi(n) + A),$$

and so

$$\frac{1}{\log x} \sum_{n \le x} \frac{|U([\sqrt{2}n]) - \chi(A)V(n)|}{n} \to 0.$$

From Lemma 4 we obtain that

$$U(n) = V(n) = n^{i\tau}$$
 and $\chi(A) = U(\sqrt{2}) = (\sqrt{2})^{i\tau}$.

Repeating the argument used in [3] our theorem follows.

References

- Daróczy, Z. and I. Kátai, On additive arithmetical functions with values in topological groups I, *Publicationes Math. (Debrecen)*, 33 (1986), 287–291.
- [2] Daróczy, Z. and I. Kátai, On additive arithmetical functions with values in topological groups I, *Publicationes Math. (Debrecen)*, 34 (1987), 65–68.
- [3] Kátai, I. and B.M. Phong, On additive arithmetical functions with values in topological groups. III, *Publicationes Math. (Debrecen)*, 94/1-2 (2019), 49–54.
- [4] Kátai, I. and B.M. Phong, On the pairs of completely multiplicative functions satisfying some relation, Acta Sci. Math. (Szeged), 85 (2019), 139–145.
- [5] Kátai, I. and B.M. Phong, On the multiplicative group generated $\frac{[\sqrt{2}n]}{n}$ V., Lithuanian Mathematical Journal, 10 (2019).
- [6] Klurman, O., Correlations of multiplicative functions and applications, Compositio Mathematica, (2016), 1622–1657.
- [7] Klurman, O., The proof is given in a letter to I. Kátai and B. M. Phong (2017).

- [8] Wirsing, E., The proof was presented in a Number Theory Meeting in Oberwolfach (1984) and in a letter to I. Kátai, September 3, 1984.
- [9] Wirsing, E., Tang Yuansheng and Shao Pintsung, On a conjecture of Kátai for additive functions, J. Number Theory, 56 (1996), 391–395.

I. Kátai and B.M. Phong

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest, Pázmány Péter sétány 1/C Hungary katai@inf.elte.hu bui@inf.elte.hu