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Abstract. Polynomial-like Boolean functions form a class of the Boolean
functions invariant with respect to a special transform of the linear space
of the two-valued logical functions. Another special set of the Boolean-
functions are the set of the symmetric functions. In this article we in-
troduce the class of the symmetric polynomial-like Boolean functions and
investigate some elementary properties of such functions.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation
are used in the same sense and they are denoted respectively by ∨, ∧, ⊕ and .
The elements of the field with two elements and the elements of the Boolean
algebra with two elements are denoted by the same signs, namely by 0 and 1;
N denotes the non-negative integers, and N+ the positive ones.

1. Introduction

Logical functions and especially the two-valued ones have important role in
our everyday life, so it is easy to understand why they are widely investigated.
A scope of the investigations is the representations of these functions and the
transforms from one representation to another ([3], [4], [5]). Another area of
the examinations is the search of special classes of the set of these functions.

Key words and phrases: Boolean function, normal form, Zhegalkin polynomial, polynomial-
like Boolean function, symmetric polynomial, symmetric function.
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Post determined the closed classes of the switching functions [10], but there
are a lot of another classes of the Boolean functions invariant with respect
to some property. Such properties can be for example linear transforms. In
[6] the author of the present paper introduced a class of the Boolean functions
invariant under a special linear transform. The functions of that class are called
polynomial-like Boolean functions.

1.1. Represantations of a Boolean function

It is well-known that an arbitrary two-valued logical function of n variables
can be written in the uniquely determined canonical disjunctive normal form,
i.e. as a logical sum whose members are pairwise distinct logical products of
n factors, where each of such logical products contains every logical variable
exactly once, either negated or not negated exclusively. Clearly, there exist
exactly 2n such products. Supposing that the variables are indexed by the
integers 0 ≤ j < n and the variable indexed by j is denoted by xj , these
products can be numbered by the numbers 0 ≤ i < 2n in such a way that we
consider the non-negative integer containing 0 in the j-th position of its binary
expansion if the j-th variable of the given product is negated, and 1 in the other
case. Of course, this is a one to one correspondence between the 2n distinct

products and the integers of the interval [0..2n − 1], and if i =
∑n−1

j=0 a
(i)
j 2j ,

where a
(i)
j is either 0 or 1, then the product corresponding to it is

(1.1) m
(n)
i =

2n−1
∧

j=0
x

(
a
(i)
j

)

j ,

where x(0) = x = 0⊕x and x(1) = x = 1⊕x. Such a product is called minterm
(of n variables).

With the numbering given above we numbered the Boolean functions of n
variables, too. A Boolean function is uniquely determined by the minterms
contained in its canonical disjunctive normal form, so a Boolean function is
uniquely determined by a 2n long sequence of 0-s and 1-s, where a 0 in the j-th

position (now 0 ≤ j < 2n) means that m
(n)
j doesn’t occur in that function, and

1 means that the canonical disjunctive normal form of the function contains
the minterm of the index j (this sequence is the spectrum of the canonical
disjunctive normal form of the function, and similarly will be defined the spectra

with respect to other representations of the function), i.e. for l =
∑2n−1

i=0 α
(l)
i 2i

with α
(l)
i ∈ {0, 1}

(1.2) f
(n)
l =

2n−1
∨
i=0

(
α
(l)
i ∧m

(n)
i

)
.

Now f
(n)
l denotes the l-th Boolean function of n variables.
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Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i = ∧n−1

j=0 x
a
(i)
j

j , where x0 = 1 = 0 ∨ x, x1 = x = 1 ∨ x

and i =
∑n−1

j=0 a
(i)
j 2j again. This product contains only non-negated variables,

and the j-th variable is contained in it if and only if the j-th digit is 1 in the
binary expansion of i. There exist exactly 2n such products which are pairwise
distinct. Now any Boolean function of n variables can be written as a modulo
two sum of such terms, and the members occurring in the sum are uniquely
determined by the function. That means that we can give the function by a
2n-long 0 - 1 sequence, and if the i-th member of such a sequence is ki then

(1.3) f (n) =
2n−1
⊕
i=0

(
ki ∧ S

(n)
i

)
.

But this polynomial can be considered as a polynomial over the field of two
elements, and in this case we write the polynomial in the following form:

(1.4) f (n) =

2n−1∑
i=0

kiS
(n)
i ,

where now S
(n)
i =

∏n−1
j=0 x

a
(i)
j

j , and the sum, the product and the exponentiation
are the operations of the field.

Between the first and the second representation of the same Boolean func-
tion there is a very simple linear algebraic transform. Considering the coef-
ficients of the canonical disjunctive normal form of a Boolean function of n
variables and the coefficients of the Zhegalkin polynomial of a function of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over the field of two elements, denoted by F2, the relation between
the vectors belonging to the two representations of the same Boolean function
of n variables can be given by k = A(n)α. Here k is the vector containing
the components of the Zhegalkin polynomial, α is the vector, composed of the
coefficients of the disjunctive representation of the given function, and A(n) is
the matrix of the transform in the natural basis.

For the matrix of the transform it is true that

(1.5) A(n) =




(1) if n = 0(
A(n−1) 0(n−1)

A(n−1) A(n−1)

)
if n ∈ N+

(this form of the matrix shows that for every n ∈ N, A(n) is the n-th power

of the two-order
( 1 0

1 1

)
regular quadratic matrix, if the operation is the

Kronecker-product).
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From the previous results immediately follows that

(
A(n+1)

)2

=

(
A(n) 0(n)

A(n) A(n)

)(
A(n) 0(n)

A(n) A(n)

)
=

=

( (
A(n)

)2
0(n)

0(n)
(
A(n)

)2
)

(1.6)

and as
(
A(0)

)2
= (1), so we get by induction that

(1.7)
(
A(n+1)

)2

= I(n+1),

where I(n) denotes the n-order identity matrix.

1.2. Polynomial-like Boolean functions

Let us consider again the transform between the canonical disjunctive nor-
mal form and the Zhegalkin polynomial of the same function. If α is the
spectrum of the canonical disjunctive normal form of the function, and k is
the spectrum of the Zhegalkin polynomial of the function, then k = A(n)α. In
the special case when α = k, the corresponding function is a polynomial-like
Boolean function [6]. As A(0) = (1), so each of the two zero variable Boolean
functions is polynomial-like. Now let u = u0u1 be the spectrum of the canoni-
cal disjunctive normal form of a Boolean function f of n + 1 variables, where
n is a nonnegative integer. Then

(1.8)

(
u0

u1

)
=

(
A(n) 0(n)

A(n) A(n)

)(
u0

u1

)

if and only if u0 = A(n)u0 and u1 = A(n)u0+A(n)u1 = u0+A(n)u1, that is f is
polynomial-like if and only if u0 =

(
A(n) + I(n)

)
u1, where u1 is the spectrum

of the canonical disjunctive normal form of an arbitrary Boolean function of
n variables. As a consequence we get that the number of the n + 1 variable
polynomial-like Boolean functions is equal to 22

n

. It is easy to see, too, that
the spectra of the canonical disjunctive normal forms of the polynomial-like
Boolean functions of n+1 variables make up a 2n-dimensional subspace of the
2n+1-dimensional linear space of the spectra of the canonical disjunctive normal
forms of all of the n+ 1 variable Boolean functions. This space is spanned by
the columns of the following matrix:

(1.9)

(
A(n) + I(n)

I(n)

)
.
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1.3. Symmetric functions and symmetric polynomials

Definition 1.1. Let n ∈ N, let X and Y be sets, f : Xn → Y and π an
arbitrary element of the symmetric group Sn. The function f is symmetric, if
for any (u0, · · · , ui, · · · , un−1) ∈ Xn

(1.10) f (u0, · · · , ui, · · · , un−1) = f
(
uπ(0), · · · , uπ(i), · · · , uπ(n−1)

)
.

If K is a field, and p ∈ K [x0, · · · , xi, · · · , xn−1], then p is a symmetric
polynomial over K, if

(1.11) p = p ◦
(
xπ(0), · · · , xπ(i), · · · , xπ(n−1)

)
,

where ◦ denotes the composition.

Theorem 1.1. The Boolean function f is symmetric if and only if its Zhegalkin-
polynomial is symmetric.

Proof. Let n be a nonnegative integer and p a symmetric polynomial in n
indeterminates over the field K, furthermore let p̂ be the polynomial function
belonging to p. If π is a permutation of the set {0, · · · , n− 1}, then for any
element u0 · · · un−1 of the set Kn

p̂ (u0, · · · , un−1) = p ◦ (u0, · · · , un−1) =

= (p ◦ (x0, · · · , xn−1)) ◦ (u0, · · · , un−1) =

=
(
p ◦

(
xπ−1(0), · · · , xπ−1(n−1)

))
◦ (u0, · · · , un−1) =

= p ◦
((
xπ−1(0), · · · , xπ−1(n−1)

)
◦ (u0, · · · , un−1)

)
=(1.12)

= p ◦
(
(x0, · · · , xn−1) ◦

(
uπ(0), · · · , uπ(n−1)

))
=

= p ◦
(
uπ(0), · · · , uπ(n−1)

)
=

= p̂
(
uπ(0), · · · , uπ(n−1)

)
,

that is, if the polynomial p is symmetric, then so is the polynomial function
determined by p, too.

Now let K be a field of q elements and ϕ : Kn → K a symmetric function.
Then there exists one and only one polynomial p of degree at most q − 1 in
every indeterminates over that field that p̂ = ϕ, namely

(1.13) p =
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)

n−1∏
i=0

(
e− (xi − ui)

q−1
)
.



214 J. Gonda

Then

p[x0, · · · ,xn−1] =
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)
n−1∏
i=0

(
e− (xi − ui)

q−1
)
=

=
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)
n−1∏
i=0

(
e−

(
xπ(i) − uπ(i)

)q−1
)
=

=
∑

u0···un−1∈Kn

ϕ
(
uπ(0), · · · , uπ(n−1)

) n−1∏
i=0

(
e−

(
xπ(i) − uπ(i)

)q−1
)
=(1.14)

=
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)

n−1∏
i=0

(
e−

(
xπ(i) − ui

)q−1
)

= p[xπ(0), · · · , xπ(n−1)],

so also the polynomial p is symmetric.

Both parts of the above proof obviously apply even when K is a field of
two elements, and then ϕ = p̂ is a Boolean function and p is the corresponding
Zhegalkin polynomial. �

Remark 1.1. The polynomial function for a symmetric polynomial is a sym-
metric function, but the converse is not necessarily true. There are infinitely
many polynomials with the same polynomial function over a finite field, most
of which are not symmetric even when the corresponding polynomial func-
tion is symmetric. For example, the polynomial function for the polynomi-
als p(1) = x0x

2
1 and p(2) = x0x1 over the field of two elements is the sym-

metric function p̂ = x0x1 , but p(1) is not a symmetric polynomial, since
p(1) = x0x

2
1 �= x2

0x1 = p(3).

It is worth to mention the following fact.

Theorem 1.2. Let k be a nonnegative integer and k ≤ n ∈ N. The k-degree
homogeneous symmetric Zhegalkin-polynomial in n indeterminates is the k-
degree elementary symmetric polynomial in n indeterminates over F2.

Proof. A Zhegalkin-polynomial is a polynomial of at most 1-degree in every
indeterminates over F2, so every monomial of such a polynomial is a product
of some distinct indeterminates of the polynomial. That means that the degree
of a term is equal to the number of the indeterminates occuring in that term.
If the polynomial is homogeneous and symmetric, and the degree of one of its
terms is k then the polynomial is the sum of the k-degree monomial and only
of these monomial. But now each of the k-degree monomial is a product of k
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distinct indeterminates and the polynomial is the sum of every such term, and
this is the k-degree elementary symmetric polinomial in n indeterminates. �

By this result we can determine a homogeneous symmetric Zhegalkin-poly-
nomial by fixing the number of the indeterminates and the degree of the poly-
nomial, that is by the ordered pair of (n; k) where n is the number of the
indeterminates and k is the degree of the monomials occuring in the polyno-
mial. Similarly, if A is a set of nonnegative integers not greater than n then
(n;A) determines a symmetric Zhegalkin-polynomial containing the k-degree
monomial if and only if k ∈ A.

Let n be a nonnegative integer, n ≥ k ∈ N and A is a subset of the non-
negative integers not greater than n. Then p(n;k) is the k-degree homogeneous
symmetric Zhegalkin-polynomial in n indeterminates and p(n;A) =

∑
k∈A p(n;k).

The condition that k ≤ n is not necessary, if we consider p(n;k) as the
zero-polynomial in the case when k is not a nonnegative integer not greater
than n.

As 2a = 0 for any a ∈ F2, so p(n;A1)+p(n;A2) = p(n;A1∆A2), where ∆ denotes
the symmetric difference, that is, A1∆A2 = (A1 ∩ Ā2) ∪ (Ā1 ∩A2).

If p(n;A) is polynomial-like, then the Boolean-function f belonging to that
polynomial is the logical sum of the minterms containing exactly n−k negated
variables, as the spectra of the function and the polynomial are identical.

2. New results

By Proposition 7. in [6] if f (x0, · · · , xn−1) is an n-variable polynomial-like
Boolean function, and π is in Sn, that is in the symmetric group of n elements,
then f

(
xπ(0), · · · , xπ(n−1)

)
is also a polynomial-like Boolean function. As the

modulo two sum of polynomial-like Boolean functions is again a polynomial-
like Boolean function, so if f is an n-variable polynomial-like Boolean function,
then

(2.1) g(x0, · · · , xn−1) = ⊕π∈Sn
f(xπ(0), · · · , xπ(n−1))

is evidently a symmetric polynomial-like Boolean function. By this result the
following theorem is not very surprising.

Theorem 2.1. For every nonengative integer n there are symmetric polynomial-
like Boolean functions.
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Proof. The 0-function of n-variables is polynomial-like and symmetric for
every nonnegative integer n, and this is true for the Boolean function belonging
to the monomial of p =

∏n−1
i=0 xi that is for the n-variable f =

∧n−1
i=0 xi AND-

function. �

Remark 2.1. In the case when n = 0 then p = 1 is the constant 1-polynomial,
while the corresponding f function is the TRUTH-function.

Theorem 2.2. For any n ∈ N the spectra of the symmetric polynomial-like
Boolean functions of n-variables form a linear space.

Proof. For a given nonnegative integer n the sum of symmetric functions of
n variables is a symmetric function, and over the field of two elements this is
enough to be a linear space. Similarly, the set of the polynomial-like Boolean
functions of n variables is a linear space, but then the intersection of the two
spaces is a linear space, too. �

Theorem 2.3. If n is a positive integer, then the negated function of a sym-
metric polynomial-like Boolean function of n variables is not a symmetric
polynomial-like Boolean function.

Proof. The index of a polynomial-like Boolean function of at least one variable
is an even number (see [7], Proposition 3.), so the negated function can not be
polynomial-like, as then 22

n − 1− k is an odd number. �

Corollary 2.1. If n is a positive integer then at most half of the n-variable sym-
metric functions is polynomial-like, so the space of the symmetric polynomial-
like Boolean functions of n-variables is a proper subspace of the space of the
n-variable symmetric Boolean functions.

Proof. The complement of a symmetric Boolean function is symmetric, and
it is different from the original one. �

Theorem 2.4. For any 3 ≤ n ∈ N the collection of the symmetric polynomial-
like Boolean functions is a proper subspace of the space of the polynomial-like
Boolean functions.

Proof. The number of the n-variable symmetric Boolean functions is equal to
2n+1, and exactly half of the indeces of that functions are even, so for a positive
integer n the number of the symmetric polynomial-like Boolean functions is at
most 2n. For that n the cardinality of the set of the polynomial-like Boolean
functions of n variables is equal to 22

n−1

. If n ≥ 3 then 2n−1 > n, and then
22

n−1

> 2n, the statement is true. �
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The bound given above is sharp. Really, the zero- and the one-variable
Boolean functions are obviously symmetric. The number of the two-variable
polynomial-like Boolean functions is 22

n−1

= 22
2−1

= 22
1

= 22 = 4, and
these functions are the 0-function, the AND and the OR function, finally the
EXCLUSIVE OR function, and each of them is a symmetric function.

Theorem 2.5. If fk is an n-variable symmetric polynomial-like Boolean func-
tion, where n is a nonnegative integer, then f22n−2−k is an n-variable symmet-
ric polynomial-like Boolean function, too.

Proof. If fk is polynomial-like then f22n−2−k is polynomial-like, too (see [7],
Proposition 5.), and then pk and p22n−2−k are the Zhegalkin polynomials of
the Boolean functions fk and f22n−2−k respectively. In the case when pk is
symmetric, then p22n−1−k is symmetric, too, and symmetric also the polyno-
mial p0 ≡ 1. But then symmetric is the polynomial p22n−2−k = p22n−1−k + p0,
too. So, if fk is an n-variable symmetric polinomial-like Boolean-function, then
f22n−2−k is a symmetric polynomial-like Boolean function, too. �

Corollary 2.2. The n-variable OR-function is a symmetric polynomial-like
Boolean function for any n ∈ N.

Proof. For any nonnegative integer n f0 ≡ 0 is an n-variable symmetric
polynomial-like Boolean function and then f22n−2−0 = f22n−2 has the same
properties. But

(2.2) f
(n)

22n−2
=

2n−1
∨
i=1

m
(n)
i ,

and this function is the n-variable OR-function. �

We have seen that the zero function, the AND function, and the OR function
are symmetric polynomial-like Boolean functions for all nonnegative integers
n. By our notation the polynomials determined by these functions are p(n;{}),
p(n;n) and p(n;{1,...,n}). Let’s see some more examples, namely the polynomials
of the symmetric polynomial-like Boolean functions of less than 6 variables:

p(0;{}), p(0;0)

p(1;{}), p(1;1)

p(2;{}), p(2;1), p(2;2), p(2;{1,2})

p(3;{}), p(3;{1,2}), p(3;3), p(3;{1,2,3})

p(4;{}), p(4;{1,2}), p(4;3), p(4;{1,2,3}), p(4;4), p(4;{1,2,4}), p(4;{3,4}), p(4;{1,2,3,4})

p(5;{}), p(5;3), p(5;{1,2,4}), p(5;{1,2,3,4}), p(5;5), p(5;{3,5}), p(5;{1,2,4,5}), p(5;{1,2,3,4,5})
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