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Abstract. In the paper the notion of dyadic A-derivative is introduced for
nonnegative, nondecreasing and concave sequence { A, }n—o. Analogues of
Bernstein inequality for Walsh polynomials and of inverse approximation
theorem are established. Also the uniform convergence of Walsh—Fourier
series to this A-derivative is studied.

1. Inroduction

Let us consider the function defined on the interval [0,1) by
ro(x) = X[o,1/2)(%) = X[1/2,1), Wwhere xg is the indicator of a set E. We extend it
to the real line by 1-periodicity and set 74 (x) = ro(2Fz), k € Z, = {0,1,...},
2 € R. The functions ry(z) are called Rademacher functions.

Every number n € N = {1,2,...} has a dyadic expansion n = Ef:o 2%,
where €, = 1 and ¢; are equal to O or 1 for 0 <i <k — 1. We set

k k-1
wa@) = [[ri(a)™ = rew) [ (rsw))"
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in this case and wo(z) = 1. The system {w,(z)}32, is called Walsh system.
It is well known that Walsh system is orthonormal and complete in L'[0,1),
other its properties see in monographs [7] written by author, A. V. Efimov and
V. A. Skvortsov and [14] written by F. Schipp, W. R. Wade and P. Simon.
Also we note the paper of N. Fine [5].

For f € L'[0,1) the Walsh-Fourier coefficients and partial sums are defined
by

[

n—

Fik) = / f@yu@)de, keZy Su(f)@) =3 Fkun(), neN.
0

k=0

The notions of strong and pointwise dyadic derivatives D, and D (D, is
defined in L?[0, 1)) were introduced by P. L. Butzer and H. J. Wagner [3], [4].
They used a specific difference operator in these definitions and obtained the
characteristic property Dw,, = nw,, n € Z;. Another approach of He Zelin
[9] allows to define the derivative of arbitrary order o > 0. Relations between
different definitions of dyadic derivative and integral see in [8].

As usually, the space LP[0,1), 1 < p < oo, consists of all measurable func-
tions f such that | f|[h = fol |f(z)|P de < oco. Further we consider the space
C*[0, 1) of dyadically continuous functions as a completion of the set P of poly-
nomials with respect to {w, }72 in the uniform norm || f|joc = sup,eo.1y [f(2)]
and LP[0,1) = C*[0,1) for p = oo (with the exception of Theorem 1.2).

Let P, = {f € L![0,1) : f(k) = 0,k > n}, n € N. Then for f € LP[0,1),
1 < p < o0, one can define the n-th best approximation by Walsh polynomials

En(f)p = inf{[|f — thp itn € Pn}, mneN.

It is known that best approximation by Walsh polynomials and dyadic modulus
of continuity are equivalent in a certain sense (the corresponding C. Watari—
A. V. Efimov result see in [14, Ch. 5, Theorem 2] and [7, Ch.10, Theorem
10.5.1]). Therefore we will use only the best approximation.

Let {\,}22, be a nondecreasing and nonnegative sequence such that

lim,, 00 Ay = +o0. If f € LP[0,1), p € [1, 0], and the series Y )\nf(n)wn(x)
is the Walsh-Fourier series of a function ¢ € LP[0,1), then ¢ is called the
A-derivative of f in LP[0,1) (notation ¢ = f,g)‘)). If f is independent of p,
e.g., for Walsh polynomials, we write f*). Similar generalized derivatives in
the trigonometric case were studied by A. I. Stepanets and his students (see,
e.g., [16]). For A\, = n®, a > 0, A-derivative reduces to fractional dyadic
derivative of order « studied in a more general setting in [9].

Further one famous result will be used. Theorem 1.1 is an analogue of
M. Riesz theorem (see [2, Ch. 8, Sect. 14 and 20]) and is due to R. E. A. C. Pa-
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ley [12]. Its proof may be found in [7, Ch. 5] and in [14, Sect. 3.3]. A gen-
eralization of this result in the case of general Vilenkin systems was obtained
independently by F. Schipp [13], P. Simon [15] and W.-S. Young [19].

Theorem 1.1. Let f € L?[0,1), 1 <p < oco. Then ||f — Sn(H)llp < CEL(f)p,
n € N. In particular, lim,,_,« || f — Sn(f)|l, = 0.

In [6] the fiollowing analogue of A. A. Konyushkov-S. B. Stechkin embed-
ding theorem (see [11]) was obtained.

Theorem 1.2. Let f € L?[0,1), 1 <p < g < oo and the series
S nt/PmYVaTlE, (f), converges. Then f € L7[0,1) and

En(f)q < C(p,q) (n””l/qEn(f)p + i kl/pl/qlEk(f)p> , meN.
k=n+1

In the Lemma 2.3 below we extend this theorem on the case ¢ = co.

In the present paper we study sufficient conditions for the continuity of f,(,k)

and uniform convergence of {S,,( 19))}2‘3:1. Also the inverse approximation
theorem is proved for A-derivative in LP[0,1).

2. Auxiliary propositions

Lemma 2.1. Let {\,}22, be a nonnegative, nondecreasing and concave se-
quence, 1 < p < co. Then for a polynomial tor = Zi;ol crwy € Por, 1 € Zy,
tW)], < CAgerltar |, holds.

the inequality ||

Proof. Let D,(x) := Zz;é wi(z) and F,(z) := >p_; Di(z)/n, n € N,
Dy(z) = 0. Then summation by parts gives

2" —1 2" —1
A= Newe = Y (Ako1 = M) Dk + A1 Dor =1 I + I,
k=0 k=1

Since Dok () = 2"X[0,1/2) () (see [14, Sect. 1.2] or [7, Sect. 1.4]), one has

(2.1) 2]l < Aar—1 < Agr.
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On the other hand, using summation by parts again we derive

2" -2
L= ANk + 1) Fepr + (Aar—1 — Aor) (27 = 1) Fyry,
k=0

where A%\, = A\ — 2\pi1 + Aiyo. It is known that || Fy||; are bounded (see
[14, Sect. 1.8]). Applying summation by parts we have

2" —1 2" —2
> Ok = A1) = D (k+DAZN + 2" (Agr 1 — Aor)
k=0 k=0

or

2" -2

ST R+ DAZN (2= 1)(Aar—1—A2r) = Ao —Azr — (Azr—1 = Azr) = Ao —Azr_1.
k=0

Therefore, by the concavity of {\,}22

2" -2
Tl <) (B + DA X[ Frpalla + (27 = D(Ar = Agr 1) [ Far 1 ]l1 <
k=0
(2.2) < Ci(Mar—1 — Ao) < Cidar.

Thus, ||Ar|l1 < (C1+1)A2r by (2.1) and (2.2). Finally, the equality tor %A, (z) =
= Zi:_ol Apcrwg(z) holds (see the definition of dyadic convolution in [14,
Sect.1.3] and formula (45) for its Walsh—Fourier coefficients in the same place).
Applying Lemma 1 from [14, Sect. 4.4] we obtain

A
111y = o * Arlly < llt2rllpll Al < (Cr 4+ 1)Aar [ftor - ]

Remark 2.1. For A\, = n®, a > 0, the inequality of Lemma 2.1 is known in a
more general setting (see [9, Lemma 1] and [18, Lemma 5]).

The following lemma is known at least in the case of concave functions (see
[10, §1, (1.20)]. The proof is given for the utility of a reader.

Lemma 2.2. If {\,}32, is a nonnegative, nondecreasing and concave se-
quence, then Ao, < 2\,, n € N.

Proof. The concavity of {\,}52, means that A?\,_; < 0 for all n € N,
whence

AnJrl*)\nSAn*)\nflS"'SAk*Akfla k:]-a“'yn'
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By summing similar inequalities one has

2n n
D k= A) €D (A=), neN,
k=n+1 k=1
and Ay, < 2\, — Ao < 2\, n

Lemma 2.3 is a revision of Theorem 1.2.

Lemma 2.3. Let 1 < p < oo, f € LP[0,1), and the series Y oo n'/P7LE, (f),
converges. Then f is equivalent to fo € C*[0,1) (i.e. f(z) = fo(z) a.e. on
[0,1)) and

(23) [lfo— SulDlloe < C0) <n1/PEn<f>p+ > k””‘lEk(f)p>7 neN.
k=n+1

In particular, there exists lim, o || fo — Sn(f)]le = 0.

Proof. It is known the following Nikol’skii type inequality for Walsh system
(see [1, Ch. 4, §9, Lemma 1]):
(2.4) [tnlloo < C1nYPtnllp, nEN, t, €P,.

By Theorem 1.1 the equality
(2.5) )+ (Sarn(f) = Sar-1a(f))
k=1

is valid, where the series converges in the space L?[0,1). From (2.4) it follows
that

D 182k (f) = Sar-1n(Hlloe < C1 Y (25m) /1S (f) = Sor-1n ()l <
k=1 k=1
(2.6)
<200y (2P By (f) < Co | 0 PEL(Fp+ D 5T ER(f)y
k=1 j=n+1

Since Sk(f) € C*[0,1) for all k € N and C*[0,1) with the norm || - || is a
Banach space, the series in right-hand side of (2.5) converges uniformly to a
function fy € C*[0,1). But earlier it was proved that the series in right-hand
side of (2.5) converges to the function f in LP[0,1). Therefore, f(z) = fo(z)
a.e. on [0,1). From (2.5) and (2.6) the inequality (2.3) follows. The last
statement of Lemma 2.3 is proved as in Theorem 3.2. |
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3. Main results

Theorem 3.1. Let {\,}22, be a nonnegative, nondecreasing, tending to in-
finity and concave sequence, 1 < p < oo, f € LP[0,1) and the series

Yo kT AER(f)p converges. Then there exists f,(,’\) and
E.(f{M), <C (A En(f)p Z kT N\ (f)p ) neN.
k=n+1
Proof. Since f € L?[0,1), 1 < p < oo, by Theorem 1.1 the series S, (f) +

+ > e 1 (Sorp (f) — Sor-1,(f)) converges in LP[0,1) to f. Let us consider the
series

(3.1) (Sn(FN +> " (Sorn(f) = Sar-1, ()N,
k=

By Lemmas 2.1 and 2.2 the estimate

1St (f) = Sar-12(F))Mlp < Crdgrn|Sorn(f) = Sar-1n(f)llp <

< Cl>\2kn<||f - San(f)Hp + Hf - SQkfln(f)”P) < zclAanEZ"'*ln(f)P
holds. Since for k > 2

EZ"‘*ln(f)P < 02 Z i_lEi(f)p’
we have

Z S2kn(f SQk—ln(f))(A)”p < 03 (AnEn(f)p + Z i_l)‘iEi(f)p> .

1=n-+1

Therefore, the series (3.1) converges in LP[0,1) and its partial sum

DYV 43 (Sorn(F) = S (D = (Sawa (/)P
k=1

has Walsh—Fourier coefficients )\jf(j) for 0 < j < 2¥n — 1. Thus, there exists
¢ € LP[0,1) such that limy oo [|(Sevn (f))N = @ll, = 0 and &(j) = A;f(),
j € Z.. By definition, ¢ = fé*) and
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En(ff)p < I = (Sn(F)Mp <D 1(S2en(f) = Sar-1, ()Ml <

k=1

< Cs ()\nEn(f)p+ i i_l)\iEi(f)p> . |

i=n+1
Remark 3.1. Similar result for trigonometric case was obtained by A.I. Stepa-
nets and E.I. Zhukina [16].

Theorem 3.2. Let {\,}52, be a nonnegative, nondecreasing, tending to in-
finity and concave sequence, 1 < p < oo, f € LP[0,1) and the series

Se  KYPTINLEL(f), converges. Then there eists f,S*) that is equivalent to
fN € C*0,1) and limy, o0 | fN — S, (f ) |loo = 0.

Proof. From the conditions of Theorem 3.2 it follows that
Sore kI MER(f)p < oo and by Theorem 3.1 there exists féA) e LP[0,1).

For the proof of convergence of the series > >, nl/p_lEn(fI(,’\))p we use The-
orem 3.1 and change the order of summation as follows (1/p+ 1/p’ = 1)

) 00 / B
Z nl/p_lEn(fng))p <Ci Z n VPN EL(f)y + Ch Z n~ /7 Z M By

n=1 n=1 k=n k
[eS) k
A B (
O B+ 0 Y Y1 My
n=1 k=1n=1
< s (Z nl/pfl)\nEn(f)p + Zkl/plAkEk(f)p> < 0.
n=1 k=1

By Lemma 2.3 fzg’\) is equivalent to f* € C*[0,1). Using inequalities of
Lemma 2.3 and Theorem 3.1 we obtain

||f(A),Sn(f(k))”mSC3 nPE,( (/\) Z Gl LE;( (A)) <
j=n+1

< anl/p ()\nEn(f)p+ Z k_l)\kEk(f)p> +

k=n-+1
+Cs Z G NE () + Z iTNE(f)p | < Can'/PALEn(f)p+
j=n+1 i=j+1

oo

(32)  +205 > EPTINE()p+Cs > 5P T INE(),.

k=n+1 j=n+1 =]
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Denote the last term in (3.2) by I. Then

I =0Cs Z Z jl/pilfl/\iEi(f)pSCZ Z il/pil)\iEi(f)p'
i=n+1j=n+1 1=n-+1

Thus, we have

(3.3) f“’—sn(f“))llooé@( VP En(f)p + Z K lAkEk<f)>

k=n+1

Due to Lemma 2.2 the estimate

DA E(f)p < Co Y KYPTIANER(f)y, mEN,
k=[n/2]

holds and the right-hand side of (3.3) tends to zero as n — co. [ |

For A\, = n% a > 0, n € Z,, denote f,SA) by Dy f. Corollary 3.1 is also
new.

Corollary 3.1. Let 0 < o < 1, 1 < p < oo, f € LP[0,1) and the series
Z;ozl k"+1/7’_1Ek(f)p converges. Then there exists Dy f that is equivalent to
¢ € C*[0,1) and lim, . [|Sn(Dy f) — ¢plloc = 0.
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