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Abstract. In the paper we deal with some basic functional equations on
an infinite hypergroup join. The special property of this join is that every
non-identity element is of infinite order, i.e. no power of it is the identity,
but there is no nonzero additive function on this hypergroup. This cannot
happen in the group case, as it is well-known. As a consequence, exponen-
tial polynomials on this hypergroup have a particularly simple form.

1. Introduction

A comprehensive monograph on hypergroups is [1] and a detailed study
on functional equations on hypergroups can be found in [2]. Notation and
terminology here will be used according to these works. By C we denote the
set of complex numbers, N is the set of all non-negative integers.

A particular hypergroup which plays a basic role in this paper is the two-
element hypergroup D(θ) (see [1, 2]). For the sake of completeness, we recall
here the definition.

The two-element hypergroup D(θ) on the set {o, a} with a �= o and θ in
(0, 1] is defined as follows: o is the identity element, involution is the identity
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mapping, and convolution is defined by the equations

δo ∗ δo = δo,

δo ∗ δa = δa ∗ δo = δa,

δa ∗ δa = θδo + (1− θ)δa.

We note that in the case θ = 1, D(θ) is the two-element group Z2.

It is easy to check that the normalized Haar measure on D(θ) is

ωD(θ) =
θ

θ + 1
δo +

1

θ + 1
δa.

We note that on discrete hypergroups we shall use the Haar measure which is
normalized in the way that the singleton {o} has measure 1. This will be called
the unit-normalized Haar measure.

2. Basic functions

Let K denote the hypergroup introduced in the previous section. Recall
that M : N → C is an exponential on K if and only if for each m,n in N we
have ∫

K

M(k)d(δm ∗ δn)(k) = M(m)M(n).

On a general hypergroup a semi-character is an exponential M satisfying
M(x∗) = M(x), where x∗ is the involution of x and overline denotes the
complex conjugation. Bounded semi-characters are called characters. Linear
combinations of characters are called trigonometric polynomials (see [1]). On
Hermitian hypergroups semi-characters are exactly the real valued exponen-
tials. Now we describe all exponentials on K. We need the following simple
proposition.

Proposition 2.1. We have for each n = 1, 2, . . .

n−1∑
k=0

θk+1θk+2 · · · θn
(θk + 1)(θk+1 + 1) · · · (θn−1 + 1)

= θn.

Proof. We prove by induction on n. The statement for n = 1 is

0∑
k=0

θ1
θ0 + 1

=
θ1

0 + 1
= θ1.
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Suppose that the statement is true for n ≥ 1, and we prove it for n + 1: we
have

n∑
k=0

θk+1θk+2 · · · θn+1

(θk + 1)(θk+1 + 1) · · · (θn + 1)
=

=

n−1∑
k=0

[
θk+1θk+2 · · · θn

(θk + 1)(θk+1 + 1) · · · (θn−1 + 1)

]
θn+1

1 + θn
+

θn+1

1 + θn
.

In the square bracket we have θn, by the induction hypothesis, hence

n−1∑
k=0

[
θk+1θk+2 · · · θn

(θk + 1)(θk+1 + 1) · · · (θn−1 + 1)

]
θn+1

1 + θn
+

θn+1

1 + θn
=

=
θnθn+1

1 + θn
+

θn+1

1 + θn
= θn+1. �

Proposition 2.2. Assume that M : K → C is an exponential. If M(n) = 0
for some n in N, then M(k) = 0 for k = n, n+ 1, . . . .

Proof. Let k > n, then δk ∗ δn = δk, hence

M(k) = M(δk) = M(δk∗δn) = M(δk)M(δn) = M(k)M(n) = 0. �

Proposition 2.3. Assume that M : K → C is an exponential. If M(k) = 1
for k = 0, 1, . . . , n − 1 for some n ≥ 1 and M(n) �= 1, then either M(n) = 0,
or M(n) = −θn, and M(n+ 1) = 0.

Proof. Suppose that M(n) �= 0. Then

M(n)2 = M(n)M(n) = M(δn ∗ δn) =

=
n−1∑
k=0

θk+1θk+2 · · · θn
(θk + 1)(θk+1 + 1) · · · (θn−1 + 1)

M(δk) + (1− θn)M(δn) =

=
n−1∑
k=0

θk+1θk+2 · · · θn
(θk + 1)(θk+1 + 1) · · · (θn−1 + 1)

+ (1− θn)M(δn) =

= θn + (1− θn)M(δn) = θn + (1− θn)M(n),

which implies M(n) = −θn. �

Theorem 2.4. The function M : K → C is an exponential if and only if one
of the following conditions holds:
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1. M ≡ 1;

2. There exists a positive integer n such that M(k) = 1 for k = 1, 2, . . . , n−1
and M(n) = −θn, and M(k) = 0 for k = n+ 1, n+ 2, . . . .

Proof. This follows from the previous propositions. �

Corollary 2.1. Every exponential on K is a character.

3. Exponential monomials and polynomials

Exponential polynomials were defined in [3] (see also [4]). Here we recall
the definition. In what follows K will denote the hypergroup defined above.
Let M : K → C be an exponential and y an element in K. Then

∆M ;y = δy̌ −M(y)δ0

is called the modified difference associated with M with increment y. In our
case y̌ = y, so the above formula is of the following form:

∆M ;y = δy −M(y)δ0.

The iterates of the modified differences are denoted as follows: for each natural
number n we define

∆M ;y1,y2,...,yn+1
=

n+1∏
k=1

∆M ;yk
= ∆M ;y1

∗ · · · ∗∆M ;yn+1
,

where the right side is understood as a convolution product. If all increments
coincide, i.e. y1 = y2 = · · · = yn+1 = y then we simply write ∆n+1

M ;y for this
product.

The function ϕ : K → C is a generalized exponential monomial on K, if
there exists an exponential M on K and a natural number n such that

∆M ;y1,y2,...,yn+1
∗ ϕ(x) = 0

holds for each x, y1, y2, . . . , yn+1 in K. It is known that if ϕ �= 0, then M is
unique, and the smallest n with the above property is called the degree of ϕ. In
this case we may call ϕ a generalized M -exponential monomial. Linear combi-
nations of generalized exponential monomials are called generalized exponential
polynomials. We omit the adjective ”generalized” if ϕ is included in a finite
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dimensional translation invariant linear space. Clearly, every exponential is an
exponential monomial of degree 0. The next simplest exponential monomials
are the M -sine functions. Given an exponential M the function ϕ is called an
M -sine function, if it is a generalized exponential monomial of degree at most
1 and ϕ(o) = 0. It is easy to see that ϕ is an M -sine function if and only if it
satisfies

(3.1) f(x ∗ y) = f(x)M(y) + f(y)M(x)

for each x, y inK. Obviously, every nonzeroM -sine function is anM -exponential
monomial of degree 1.

Now we show that on K the generalized exponential monomials are exactly
the constant multiples of exponentials.

Theorem 3.1. Every generalized exponential monomial on K is a constant
multiple of an exponential.

Proof. First we prove that every M -sine function is identically zero on K.
Indeed, every Kn is a subhypergroup of K, hence the restriction of every expo-
nential function, resp. every M -sine function on K is an exponential function,
resp. M -sine function on Kn for n = 1, 2, . . . . However, as Kn is finite, every
M -sine function is zero on Kn (see [5]).

Now we show that every generalized exponential monomial ϕ of degree at
most 1 is a constant multiple of an exponential on K, i.e. it is of degree 0. The
function ϕ : K → C satisfies

0 = ∆M ;y,z ∗ϕ(x) = ϕ(x∗y∗z)−M(y)ϕ(x∗z)−M(z)ϕ(x∗y)+M(y)M(z)ϕ(x)

for each x, y, z in K. Putting x = 0 we have

ϕ(y ∗ z) = ϕ(y)M(z) + ϕ(z)M(y)− ϕ(0)M(y)M(z),

or equivalently

ϕ(y ∗ z)− ϕ(0)M(y)M(z) = ϕ(y)M(z) + ϕ(z)M(y)− 2ϕ(0)M(y)M(z)

for each y, z in K. This can be written in the form

ϕ(y ∗ z)− ϕ(0)M(y ∗ z) = [ϕ(y)− ϕ(0)M(y)]M(z) + [ϕ(z)− ϕ(0)M(z)]M(y),

that is, ϕ − ϕ(0)M is an M -sine function. It follows that ϕ − ϕ(0)M = 0,
hence ϕ is a constant multiple of an exponential. It follows that there is no
generalized exponential monomial on K, which is of degree 1.

Suppose now that ϕ : K → C is a generalized exponential monomial of
degree n ≥ 2. Then we have

∆M ;y1,y2,...,yn+1 ∗ ϕ(x) = 0
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holds for each x, y1, y2, . . . , yn+1 in K, further there exist z, z1, z2, . . . , zn in K
such that

∆M ;z1,z2,...,zn ∗ ϕ(z) �= 0.

It follows that the function ψ = ∆M ;z1,z2,...,zn−1
∗ ϕ is nonzero, and

∆M ;y1,y2 ∗ ψ(x) = ∆M ;y1,y2,z1,...,zn−1 ∗ ϕ(x) = 0,

which is a contradiction. It follows that there is no nonzero generalized expo-
nential monomial on K which is of degree at least 2. �

Corollary 3.1. Every exponential polynomial on K is a trigonometric poly-
nomial.

Recall that a function A : K → C is called additive if

(3.2) A(x ∗ y) = A(x) +A(y)

holds for each x, y in K. In particular, additive functions are 1-sine functions,
where 1 stands for the exponential identically 1. Hence we have the corollary:

Corollary 3.2. Every additive function on K is zero.

It follows that Hom(K,R), the linear space of all real additive functions on
K is trivial. We recall that the dimension of Hom(G,R) for an Abelian group
G is equal to the torsion free rank of G, which is always positive unless G is
a torsion group, that is, for every element g of G there is a positive integer
n such that n · g = 0, or, equivalently δng = δ0. In the case of commutative
hypergroups the situation is completely different: for every element x �= 0 in
K no positive convolution power of δx is equal to δ0: in fact, the support of δnx
is {0, 1, . . . , n}.
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[4] Székelyhidi, L., Characterization of exponential polynomials on commu-
tative hypergroups, Ann. Funct. Anal., 5(2), (2014) 53–60.

[5] Voit, M., Sine functions on compact commutative hypergroups, Arch.
Math. (Basel), 107(3), (2016), 259–263.
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