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Abstract. Control charts can be applied in a wide range of areas, this
paper focuses on generalisations suitable for healthcare applications. We
focus on the complete modelling of costs emerging during the process and
investigate the effect of different shift size distributions on the optimal time
between samplings, critical value and the resulting cost expectation and
standard deviation. Namely, we show the results of optimisations for the
exponential distribution and exponential-geometric mixture distributions.

1. Introduction

Control charts, as methods of statistical process control in industry have
been introduced by Walter A. Shewhart in the 1920s [9]. Even though initially
control charts were optimised with respect to statistical criteria, the concept of
cost-efficient or cost-optimal control charts appeared not long after. One of the
earliest and most important work in this field was done by Acheson J. Duncan
in 1956 [4]. The concept is still very popular today as can be seen by published
articles and developed software packages [10, 14].

Since the original inception of control charts, their use have been expanded
considerably, such as to different fields of engineering [11], and also to areas
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further away from industrial settings. Our current research focuses on applica-
tions in healthcare settings. The authors’ recent article on cost-optimal control
charts showed an example for healthcare application on low-density lipoprotein
monitoring [2]. Some articles in this field consider quality primarily, rather than
costs [3]. For further healthcare examples see Suman et al [12]. Most of these
cited papers deal with costs from an economic viewpoint, while our focus is the
cost-optimal controlling of a healthcare characteristic where many costs only
play a role indirectly, such as healthcare burden generated by complications.

In the above-cited paper, we developed a flexible framework which is based
on the works of Zempléni et al [13]. This framework uses a Markov chain-based
approach, which is similar to Duncan’s cycle model as it also defines states
related to the monitored process. The advantage of this approach was that
it allowed generalisations for random shift sizes, random repairs and random
sampling times, all of which are common in healthcare applications. Using these
control charts, we were able to estimate the optimal parameters of a patient
monitoring setup, which consisted of the optimal time between samplings (i.e.
control visits) and critical value (i.e. medical criteria) [2].

In this paper we aim to assess the effect of different shift size distributions
- distributions which model the degradation in quality - on the optimal param-
eters, expected cost and cost standard deviation. We demonstrate the flexibil-
ity and usefulness of the Markov chain-based framework with the comparison
of a continuous and a mixed distribution. The choice of the distributions is
motivated by their potential application in healthcare. We compare these dis-
tributions for different parameter setups. The implementations and results
shown here were created using custom-made functions in the R programming
language.

The rest of the paper consists of the following parts: Section 2 sets the
mathematical background for the later results. Namely Subsection 2.1 briefly
discusses the Markov chain-based framework and its generalisations. Subsec-
tion 2.2 deals with the implementation such as discretisation and programming.
In Section 3, we show and discuss the results of different distributions and pa-
rameter setups. Section 4 concludes the paper.

2. Methods

The description of the Markov chain-based framework below is just a brief
introduction and summary necessary for understanding the results presented
later in the paper. For further reading and more detailed descriptions see
Zempléni et al. and Dobi and Zempléni [2, 13].
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2.1. The Markov chain-based framework and its generalisations

Our control charts are used to monitor a characteristic, based on a single
sample element at a time. The shift in this characteristic - when it occurs - is
positive. These assumptions correspond to an X-chart setup with sample size
N = 1 and one-sided critical value K. Usually, there are three free parameters
which are the focus of optimisation: the sample size N , the critical value K,
and the time between samplings h. Since the sample size is fixed here, we are
left with two parameters to use: K and h.

The following parameters and constants used throughout the paper are
supposed to be known:

List of parameters

Notation Meaning

µ0 Target value, in-control expectation

σ Process standard deviation

δ Expected value of the exponential distribution (shift size)

q Probability of geometric shift in the mixed distribution

ξ Probability parameter of the geometric distribution

s Expected number of shifts in a unit time

α, β Parameters of the repair size beta distribution

cs Sampling cost

co Shift-proportional out-of-control cost

crb Base repair cost

crs Shift-proportional repair cost

The followings are also assumed:

• The measurement error is normal with expectation 0 and known standard
deviation σ. Let its cumulative distribution function (CDF) be denoted
by φ. Thus the in-control process distribution is normal with parameters
µ0 and σ.

• The shift intensity (1/s - the inverse of the expected number of shifts in
a unit time) is constant.

• The shift size distribution is assumed to be known.
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• The process does not repair itself, and when a repair (treatment) is carried
out it does not repair the process perfectly. Furthermore, the repair itself
is treated as an instantaneous event, thus all costs related to repairing
should be included in the repair cost. For example if a major repair
entails higher cost, then this should also be reflected in the calculation.

• The process standard deviation, the time between shifts, the shift sizes
and repair effectiveness are all assumed to be independent from each
other.

Using the above assumptions, the future distances from µ0 are only de-
pendent on the current distance. This way, one can define a Markov chain.
The states of this Markov chain are defined at the sampling times and the
type of the state depends on the measured value and the actual (unobservable)
background process, namely whether there was a shift from the target value in
the parameter. The possible difference between the two is due to the process
standard deviation. This way four basic state types are defined:

• No shift - no alarm: in-control (INC)

• Shift - no alarm: out-of-control (OOC)

• No shift - alarm: false alarm (FA)

• Shift - alarm: true alarm (TA)

Our approach contains two important differences compared to the tradi-
tional models. First is the random shift size, introduced for the cost-optimal
approach by Zempléni et al. [13]. The second is the random repair size, in-
troduced by Dobi and Zempléni [2]. It is worth to note that the latter paper
contains a third mayor generalisation in the form of random sampling time,
which will not be discussed here, as we shall rather focus on the effect of the
differences between the shift size distributions.

Let τi denote the random shift times on the real line and let ρi be the
shift size at time τi. Assume that ρi follows a continuous distribution, which
has a CDF with support over (0,∞), and that the shift sizes are independent
from each other and from τi. Let the probability mass function (PMF) of the
number of shifts after time t from the process’ start (assumed to be in the
in-control state) be denoted by νt. νt is a discrete distribution with support
over N0. If the previous conditions are met, the resulting random process of the
shifts - let us denote it by H(t) - has step functions as trajectories, which are
monotonically increasing between samplings. The CDF of the process values
for a given time t from the start can be written the following way (assuming
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that there was no alarm before t):

(2.1) Zt(x) =




0 if x < 0,

νt(0) +
∞∑
k=1

νt(k)Ψk(x) if x ≥ 0,

where Ψk() is the CDF of the sum of k independent, identically distributed
shift sizes ρi. The case x = 0 means there is no shift. The probability of zero
shift size is just the probability of no shift occurring, which is νt(0).

Imperfect repair means that the treatment will not have perfect results on
the health of the patient, or - in industrial settings - that the machines cannot be
fully repaired to their original condition. In this case, the imperfectly repaired
states act as out-of-control states. It is assumed that the repair cannot worsen
the state of the process, but an imperfectly repaired process will still cost the
same as an equally shifted out-of-control process, thus repaired and out-of-
control states do not need distinction during the cost calculation. We define a
random variable R to determine the proportion of the remaining distance from
µ0 after repair, and assume that it has a Beta(α, β) distribution with known
parameters. Of course, this can be changed, depending on the repair process.

A process with the above assumptions and generalisations is shown on Fig-
ure 1. One can see that the process starts from an in-control state at µ0.
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Figure 1: Definition of states
Dashed line: expected value, Black vertical line: shift in the expected value,
Dotted line: critical value, FA: False alarm, TA: True alarm

Even though there is no shift, an alarm signal is still possible, which is a false
alarm. After some time, there may be a shift (µ1) in the value of the monitored
characteristic (e.g. expected value), which creates out-of-control states. During
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this phase an alarm is called a true alarm, which induces a repair which is not
necessarily perfect, thus the process stays out-of-control, but at a level (µr)
which is closer to µ0 than before the repair. Note that all of the states are
defined at the time of samplings and that only positive shifts are possible.

The resulting process of the expected values is a monotone increasing step
function between samplings and has a downward ”jump” at alarm states - as
the repair is assumed to be instantaneous.

The expected out-of-control operation cost can be written as the expectation
of a function of the distance from the target value. At (2.1) the shift size
distribution was defined for a given time t, but this time we are interested in
calculating the expected cost for a whole interval. We propose the following
calculation method for the above problem:

Proposition. Let Ht0,j be the shifted mean-process (its unconditional distri-
bution function Zt was given in (2.1)) upon the condition that H(t0) = j and

let f() be a strictly monotonically increasing function over R+. The area Cf
h,j

under the curve {t, E(f(Ht0,j(t)))}, where t0 ≤ t ≤ t0 + h can be written as:

(2.2) Cf
h,j =

t0+h∫

t0

∞∫

f(j)

1− Zt−t0(f
−1(x)− j)dxdt+ hf(j).

Proof. Let us observe that E(f(Ht−t0 |Ht0 = j)) =
∫∞
f(j)

1 − P (f(Ht−t0) <

< x|Ht0 = j)dx+f(j) =
∫∞
f(j)

1−Zt−t0(f
−1(x)−j)dx+f(j) by the monotonicity

of f and since it is known that if X is a non-negative random variable, then
E(X) =

∫∞
0

(1−F (x))dx, where F () is the cumulative distribution function of
X. Furthermore, observe that this expected value is a monotonic function of
t. So, the area under the curve is just (2.2). �

Observe that (2.2) can be used to calculate the total cost generated by
out-of-control operation over a h long sampling interval, given that the process
starts at µ = j.

2.2. Implementation

Exponentially distributed shift size. Let us assume first that the shift
times form a homogeneous Poisson process, and the size of a single shift is ex-
ponentially distributed, independently of previous events. Using the notations
of (2.1), νt would be the PMF of the Poisson distribution, with parameter ts
- the expected number of shifts per unit time multiplied by the time elapsed.
Ψk() - the shift size CDF, for k shift events - would be now a special case of
the gamma distribution, the Erlang distribution E(k, 1

δ ), which is just the sum
of k independent exponential variates each with mean δ.
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For practical purposes we can apply the previous, general proposition to our
model of Poisson-gamma shift size distribution. The connection between the
distance from the target value and the resulting cost is often assumed not to
be linear: often a Taguchi-type loss function is used - the loss is assumed to be
proportional to the squared distance, see e.g. the book of Deming [1]. Applying
this to the above proposition means f(x) = x2. Since we are interested in the
behaviour of the process between samplings, let t0 = 0, thus:

C2
h,j =

h∫

0

[
e−tsj2 +

( ∞∑
k=1

(ts)ke−ts

k!
·

∞∫

0

(x+ j)2
(1/δ)kxk−1e−x/δ

(k − 1)!
dx

)]
dt =

=

h∫

0

e−tsj2 +
∞∑
k=1

(ts)ke−ts

k!

(
kδ2 + (kδ + j)2

)
dt =

=

h∫

0

2δ2ts+ (δts+ j)2dt = h2sδ
(
δ +

hsδ

3
+ j

)
+ hj2,

where first we have used the law of total expectation - the condition being the
number of shifts within the interval. If there is no shift, then the distance is not
increased between samplings, this case is included by the e−tsj2 term before
the inner integral. Note that the inner integral is just E(X + j)2 for a gamma
- namely an Erlang(k, 1

δ ) - distributed random variable. When calculating the
sum, we used the known formulas for E(Y 2), E(Y ) and the Poisson distribution
itself - where Y is a Poisson(ts) distributed random variable.

Mixture distribution as the shift size. Let us assume now that the shift
times form a homogeneous Poisson process, as before, but the size of a single
shift has a distribution which is a mixture of an exponential and a geometric
distribution:

Fm(x) = qFg(x) + (1− q)Fe(x),

where q ∈ [0, 1] is the mixing parameter, Fg() is the CDF of the geometric
distribution, Fe() is the CDF of the exponential distribution, and Fm() denotes
the CDF of the resulting mixture distribution. Such a distribution can model
processes with slow degradation, mixed with sudden jumps. A real-life example
could be the effectiveness of a professional athlete, where the slow degradation
can be attributed to age and sudden degradation to accidents. Another example
could be simultaneously occurring chronic kidney disease and acute kidney
injury [6]. Different definitions are available for the geometric distribution,
the one used here has support over {1, 2, ...}, thus Fg(x) = 1 − (1 − ξ)x, with
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probability parameter ξ. A negative binomial distribution can be defined as
the sum of independent geometrically distributed random variables with the
same parameter. Its PMF can be written in the following way:

fnb(x) =

(
x− 1

x− r

)
· ξr(1− ξ)x−r,

where r is the number of summed geometrically distributed variables. The
support of this distribution is x ∈ {r, r + 1, r + 2, ...}. Let us assume now that
n shifts occurred in a given time interval, and r of these were geometrically,
while the rest were exponentially distributed. The CDF of the distribution of
the sum of the shifts is then

FM |n,r(x) =




FEn−r (x) if r = 0,

�x�∑
l=r

FEn−r
(x− l)fnb(l) otherwise,

where FEn−r is the distribution function of the Erlang distribution E(n− r, 1
δ ).

The distribution function of the sum of n variables with exponential-geometric
mixed distribution is then

FM |n(x) =
n∑

r=0

fb(r)FM |n,r(x),

where fb() is the PMF of the binomial distribution with parameters n and q,
giving the probability of r geometrically distributed shifts out of n.

If one wants to construct the shift size distribution for a given time after
start using the notations in (2.1), νt would be the PMF of the Poisson distri-
bution, just as before, and Ψk() would be FM |n() with n = k. (2.2) can also be
used with this new shift size distribution, but the calculation of a closed form
seems to be impossible, thus approximations will be used during application.
The generality of (2.2) is highlighted by its application on mixture distribu-
tions, since there is no density function to be used to ease the calculations, like
in the simpler, exponential case above.

Discretisation. For cost calculation purposes we would like to find a discrete
stationary distribution which approximates the distribution of the monitored
characteristic at the time of samplings. This requires the discretisation of the
above defined functions, which in turn will allow us to construct a discrete time
Markov chain with discrete state space.

A vector of probabilities is needed to represent the shift size PMF. Discreti-
sation may introduce a bias: in reality, the distance from the target value can
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fall anywhere within a discretised interval, but without correction, the maxi-
mum of the possible values would be taken into account, which would be an
overestimation of the actual shift size. We use a correction where the midpoint
of the interval is used, which can still be somewhat biased, but in practice,
with a fine enough discretisation, this effect is negligible.

Let ∆ be the unit of the discretisation and Vd the number of states consid-
ered after discretisation. The in-control state is 0, thus the upper endpoints of
the intervals are 0, . . . , (Vd − 1)∆. We will define two functions for notational
convenience, these will be used for correcting the discretisation bias throughout
the paper:

∆+(v) = v∆+
∆

2
, v = 0, . . . , Vd − 1,

∆−(w) = w∆− ∆

2
, w = 1, . . . , Vd − 1.

v∆ or w∆ would simply be the lower or upper boundary of the interval in
consideration. The ∆

2 term is added or subtracted to take the middle of the
interval into account.

We can define the shift size PMF for a t long sampling interval, given that
the starting state is i:

zt,i(j) =




νt(0) if j = 0, i = 0,
∞∑
k=1

νt(k)
(
Ψk(j∆)−Ψk((j − 1)∆)

)
if 1≤j≤Vd−1, i = 0,

νt(0) +
∞∑
k=1

νt(k)Ψk(∆+(j)) if j = 0, i �= 0,

∞∑
k=1

νt(k)
(
Ψk(∆+(j))−Ψk(∆+(j − 1))

)
if 1≤j≤Vd−i−1, i �= 0.

For j = 0 the function is the probability of staying at the current level. The
i = 0 case represents shifts from the healthy, in-control state. This case requires
special treatment, since this value is actually given, unlike the other cases,
where the value can fall anywhere within the discretised interval. Naturally, the
infinite sums can only be approximated during application. This discretisation
scheme works for both exponentially and mixture distributed shifts.

The discretised version of the repair size distribution can be written the
following way:

R(l,m) = P

(
m

l + 1/2
≤ R <

m+ 1

l + 1/2

)
,
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where l is the number of discretised distances closer to µ0 than the current one.
m is the index for the repair size segment we are interested in (m ≤ l), with
m = 0 meaning the best possible repair. The repair is assumed to move the
expected value towards the target value by a random percentage, governed by
R(). Even though discretisation is required for practical use of the framework,
in reality the repair size distribution is continuous. To reflect this continuity in
the background, the probability of perfect repair is set to be 0. l is set to be 0
when there is no repair, meaning R(0,m) ≡ 1. The 1/2 terms are necessary for
correcting the overestimation of the distances from the target value, introduced
by discretisation.

Transition matrix and stationary distribution. The transition proba-
bilities can be written using the φ() process distribution, the zt,j() shift size
distribution and the R() repair size distribution. The size of the transition
matrix - let us denote it with Π - is 2Vd × 2Vd since every shift size has two
states: one with and one without alarm. The first Vd columns are states with-
out alarm, the second Vd are states with alarm. Once the process leaves the
healthy state it will never return, this is due to the nature of the imperfect
repair we have discussed above.

The transition matrix defines a Markov chain with a discrete, finite state
space with one transient, inessential class (in-control states) and one positive
recurrent class (out-of-control and true alarm states). The starting distribution
is assumed to be a deterministic distribution concentrated on the in-control
state, which is to say that the process is assumed to always start from the target
value. In finite Markov chains, the process leaves such a starting transient class
with probability one. The problem of finding the stationary distribution of the
Markov chain is thus reduced to finding a stationary distribution within the
recurrent classes of the chain. Since there is a single positive recurrent class
which is also aperiodic, we can apply the Perron–Frobenius theorem to find
the stationary distribution [8]. If we consider now Π without the inessential
class - let us denote it with Π′ - then the stationary distribution - which is the
left eigenvector of Π′, normalised to sum to one - is unique and exists with
strictly positive elements. Finding the stationary distribution is then reduced
to solving the following equation: Π′T f0 = f0, where f0 is the left eigenvector
of Π′. This amounts to solving 2Vd − 2 equations - the number of states minus
the in-control and false alarm states - for the same number of variables, so the
task is easily accomplishable. The stationary distribution is then:

P =
f0∑2Vd−2

i=1 f0i
.

Cost function. One can construct different cost functions to accommodate
the process and monitoring setup at hand. Here, we present a general cost
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function which should be usable in many situations. One of the important
parts of the cost function is the total cost due to faulty operation between
samplings, thus we shall apply (2.2). The connection between the distance
from the target value and the resulting cost will be assumed to be proportional
to the squared distance. This cost will be expressed by an A2 vector, which
contains the weighted sum of the expected squared distances from the target
value between samplings:

A2
i =

Vd−1∑
j=1

C2
h,∆−(j)Mij .

C2
h,∆−(j) is calculated using (2.2). j indicates one of the possible starting dis-

tances immediately after the sampling, and i indicates the state - shift - of the
process at the current sampling. Mij is the probability that ∆−(j) will be the
starting distance after the sampling, given that the current state is i. These
probabilities can be written in a matrix form:




Distance from the target value starting from ∆−(1)︷ ︸︸ ︷
1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...

...
...

1 0 0 . . .
R(1, 0) R(1, 1) 0 . . .
R(2, 0) R(2, 1) R(2, 2) . . .

...
...

...







Out-of-control




True alarm

It can be seen, that when the process is out-of-control without alarm, the
distance is not changed. The probabilities for the alarm states are calculated
using the R() repair size distribution.

The expected cost per unit time using the stationary distribution and A2

is then:

E(C) =
cs +

∑Vd−1
i=1

(
crb + crs∆

2
−(i)

)
Pri + co(A

2 · P )

h
.

The first term in the numerator is the sampling cost. The second term deals
with the repair costs and the Pri true alarm probabilities. The repair cost is
partitioned into a base and shift-proportional part: crb and crs, respectively.
The true alarm probability is used, since it is assumed that repair occurs only if
there is an alarm (and the false alarm state has probability 0 in the stationary
distribution). The last term is the total cost due to faulty operation while the
process is shifted.
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So far only the expected cost was considered during the optimisation. In
certain fields of application, the reduction of the cost standard deviation can
be just as or even more important than the minimisation of the expected cost,
[7]. Motivated by this, let us consider now the weighted average of the cost
expectation and the cost standard deviation:

G = pE(C) + (1− p)sd(C).

Now G is the value to be minimised and p is the weight of the expected cost
(0 ≤ p ≤ 1). The cost standard deviation can easily be calculated by modifying
the cost function formula. All of the previous models can be used without any
significant change, one simply changes the value to be minimised from E(C)
to G.

Implementation of the methods was done using the R programming lan-
guage. Supplying all the necessary parameters, one can calculate the G value
of the process for one time unit. It is also possible to minimise the G value
by finding the control limit and the optimal time between samplings. All the
other parameters are assumed to be known. The optimization step can be
carried out using different tools, the results presented here were obtained with
the built-in optim() R function. The optimisation procedure can be divided
into three steps. First, the transition matrix needs to be constructed from the
given parameters. After this, the stationary distribution of the Markov chain
is computed. In the third step, the G value is calculated using the stationary
distribution and the cost function. The optimisation algorithm then checks the
resulting G value and iterates the previous steps with different time between
sampling and/or control limit parameters until it finds the optimal ones.

3. Comparison of different distributions

Optimisation. In this section we will show cost calculation and optimisation
results for different parameter setups and shift size distributions. First we
ran cost calculations to create sort of a baseline, where both the expectation
and the variance of the two shift size distributions were equal, and then we
compared these with setups where only the expectations or the variances were
equal. Table 1 contains information about the baseline and the comparison
setups, as well as the resulting moments of the cost function, calculated using
the stationary distribution. One can see that in the baseline model, the first
two moments of the exponential and mixture shift size distribution are equal,
but the higher moments are different. This also results in very similar first two
moments in the stationary distributions. Only the first moments should be
the same in the stationary distributions, as the calculation of the expected cost
already contains squared values, as squared losses are taken into account due to
the Taguchian loss function. The minor difference between the first moments
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Distribution Data
Baseline Comparisons

Exponential
δ = 2

Mixture1
δ = 1.5,
ξ = 1/3,
q = 1/3

Mixture2
δ = 1.5,
ξ = 4/9,
q = 2/3

Mixture3
δ = 1.5,
ξ = 0.239,
q = 0.1

Shift size

E(X) 2 2 2 1.768
E(X2) 8 8 6.75 7.126
V ar(X) 4 4 2.75 4
E(X3) 48 50.5 33.563 51.966
E(X4) 384 446 222.938 602.87

Stationary
h = 1,
K = 1

E(C) 70.815 69.401 65.204 61.830
E(C2) 2.360 ·104 2.385 ·104 1.748 ·104 2.096 ·104
V ar(C) 1.363 ·102 1.379 ·102 1.150 ·102 1.309 ·102
E(C3) 2.453 ·107 2.632 ·107 1.440 ·107 2.532 ·107
E(C4) 3.948 ·1010 4.445 ·1010 2.018 ·1010 4.629 ·1010

Table 1: Shift size distribution moments and the resulting stationary distribu-
tion moments for σ = 1, p = 1, s = 0.2, α = 1, β = 3, cs = 1, co = 20, crb = 60,
crs = 10

can be explained by computational biases introduced by e.g. approximations
of infinite sums. Looking at the non-equal variance case, we can see that not
even the expectations are equal if we compare the stationary distribution of the
Mixture1 and Mixture2 columns. This is of course because of the squared loss
function as mentioned above. The non-equal expectation case (Mixture3 ) shows
that the resulting first and second moments in the stationary distribution are
still different compared to the baseline Mixture1, but the higher order moments
are similar. This experiment has demonstrated, that the first two moments play
the most important role in the calculation of G.

Figure 2 contains optimal parameter values for the exponential distribution
and the compared mixture distributions. The baseline showed near-identical
results for the two distributions - the same as the solid lines on Figure 2 -
thus these will not be discussed separately. Note that the results were created
using a relatively high process standard deviation (σ = 1). Optimisations were
run for different out-of-control costs and p values. p = 1 means that the cost
standard deviation is not taken into account during optimisation.

Looking at the figures, one can assess that the critical value depends only
weakly on the out-of-control cost, and that this dependence is affected by p.
The time between samplings decreases with the increase of the out-of-control
cost. The average cost and the cost standard deviation both increase with the
out-of-control cost, as expected.

When the cost standard deviation is taken into account during the opti-
misation procedure (p = 0.75), then lower critical value should be used with
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Figure 2: Optimal parameters and the resulting expected cost and cost stan-
dard deviation as function of the out-of-control cost (co) and weight of the cost
expectation during optimisation (p) for σ = 1, s = 0.2, α = 1, β = 3, cs = 1,
crb = 60, crs = 10

increased time between samplings. This is logical, because the increased time
between sampling will lead to less frequent interventions, thus a less erratic
process. Of course, at the same time we do not want to increase the expected
cost, so the critical value is lowered. The cost standard deviation is decreased,
as expected. What is interesting to note is that the expected costs have only
mildly increased compared to the p = 1 setup. This is important, because it
shows that by changing the parameters appropriately, the cost standard devia-
tion can be lowered - sometimes substantially - while the expected cost is only
moderately increased.

The difference between the results obtained with different distributions is
virtually non-existent if we look at the critical values and the times between
samplings, with one exception: a shift size distribution with lower expectation
entails somewhat longer times between samplings, if the standard deviation is
also taken into account as can be seen at the upper-left plot. The differences
in the resulting expected costs and cost standard deviations are much more
visible. A shift size distribution with lower expectation or standard deviation
entails lower expected cost and cost standard deviation. Namely, Mixture2,
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which has the lowest moments starting from the order of 2, entails the lowest
cost standard deviation and a lower cost expectation than the baseline. This
is as expected, since second moments appear even in the calculation of the
expectation. Mixture3, which has the lowest expectation, entails the lowest cost
expectation, but a higher cost standard deviation, than Mixture2. It seems like
- at least for these particular distributions - that only the first two moments
have major effect on the optimal parameters and on the resulting expected costs
and cost standard deviations. This can be quite useful in situations where only
the first two moments of the shift size distribution can be reliably estimated.

Relationship of parameters. It is often helpful to look at the relation-
ship between the parameters and the resulting expected cost and cost stan-
dard deviation. Figure 3 shows G values on a contour plot as function of the
time between samplings and the critical value, using the mixture distribution.
The parameters correspond to the ones used on Figure 2 for Mixture2 with
p = 0.75 and co = 20 (the dotted, black lines in the middle of the plots).
The black dot roughly in the middle of the plot marks the optimal parameters
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Figure 3: G value as function of the time between samplings and the criti-
cal value, exponential-geometric mixture shift size distribution with q = 2/3,
δ = 1.5, ξ = 4/9, σ = 1, p = 0.75, s = 0.2, α = 1, β = 3, co = 20, cs = 1,
crb = 60, crs = 10

which entail the lowest possible G value. A clear elliptical shape can be seen,
suggesting a close-to-linear relationship between the conditional minima: the
optimal critical values as a function of the time between samplings lie on a line
with negative slope.
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Stationary distribution. Even though in some cases the results can be
similar when using different distribution, the inspection of the stationary dis-
tributions can yield useful information. Comparisons will be made for q = 0.9.
Figure 4 contains results about the theoretical and simulated stationary distri-
butions, generated with the exponential and the mixture distribution. Simu-
lations were run for 20000 sampling intervals. Simulations from the first 100
sampling intervals were discarded as a burn-in stage. Comparison to simulated
results has proved to be an important tool during both result-assessment and
error-finding. Note that the stationary distribution is interpreted at the time
of samplings, before repair (in case of an alarm state). One may assess that
the theoretical stationary distributions fit the simulated results quite well.
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Figure 4: Theoretical and empirical stationary distributions using h = 1,
K = 1, q = 0.9, δ = 1.5 (for both distributions), ξ = 4/9, σ = 1, p = 0.75,
s = 0.2, α = 1, β = 3, co = 20, cs = 1, crb = 60, crs = 10

The probability of the in-control state is 0, as expected, and the highest proba-
bility can be seen at the state just above the target value for both distributions.
The increase in probabilities at the furthest distance taken into account is due
to the finite number of states, (since the support of the distributions in reality is
not finite). In the case of the exponential distribution, a near-exponential curve
can be seen, as the probability rapidly decreases with the increasing distance
from the target value. If we compare this to the results generated with the mix-
ture distribution, the effect of the geometric distribution can clearly be seen, as
the distribution is now multimodal. The peaks correspond to intervals around
integers. Following the peaks, a near-exponential decrease can be seen in the
probability. This can be attributed to the effect of exponentially distributed
shifts added to the discrete shift. The shape of the repair size distribution is
also such, that it promotes repairs relatively close to the target value.
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4. Conclusions

This article explored the effect of different shift size distributions in the
generalised Markov chain-based cost-optimal control chart model. We com-
pared exponentially distributed shift sizes with mixture distributed ones. The
mixture distribution was defined using the exponential and the geometric dis-
tributions. We showed that both distributions can be easily fitted into the
Markov chain-based framework. The cost calculation between samplings was
also possible with both distributions.

Our results show that the increase in the out-of-control cost has little-to-no
effect on the critical value, while it decreases the time between samplings and
increases both the cost expectation and cost standard deviation. The inclu-
sion of the cost standard deviation into the optimisation algorithm decreased
the critical value, increased the time between samplings, somewhat increased
the expected cost and considerably decreased the cost standard deviation for
all investigated cases. Our results with different shift size distributions and
target functions show that - in the analysed cases - practically only the first
two moments are important - although one might have suspected that higher
moments would play a role as well. The relationship between the time between
samplings, the critical value and the resulting expected cost and cost standard
deviation can be described by elliptical shaped contours, suggesting a close-to-
linear relationship between the parameters. The inspection of the stationary
distributions revealed markedly different shapes, where the effect of the shift
size distribution is clearly visible.
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