PROBLEMS AND RESULTS ON GENERALIZED QUASI-ARITHMETIC MEANS

Zoltán Daróczy (Debrecen, Hungary)

Communicated by Antal Járai

(Received March 20, 2019; accepted April 14, 2019)

Abstract. Let $M:I^2\to I$ be a non-symmetric generalized quasi-arithmetic mean. We investigate the function $N:I^2\to\mathbb{R}$ defined by

$$N(x,y) := \alpha x + \beta y + \gamma M(x,y) \qquad (x,y \in I),$$

where $\alpha\beta\gamma\neq0$, $\alpha\neq\beta$.

We answer the following question: Under what conditions is the function N symmetric?

1. Introduction

Let $I\subset\mathbb{R}$ be non-empty open interval. A well-known generalization of the arithmetic mean

$$A(x,y) := \frac{x+y}{2} \qquad (x,y \in I)$$

is the quasi-arithmetic mean

$$A_f(x,y) := f^{-1}\left(\frac{f(x) + f(y)}{2}\right) \qquad (x, y \in I),$$

 $Key\ words\ and\ phrases$: Generalized quasi-arithmetic means.

2010 Mathematics Subject Classification: 39B40.

Research supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651.

118 Z. Daróczy

where $f: I \to \mathbb{R}$ is a continuous strictly monotone function. Its generalization is the weighted quasi-arithmetic mean

$$A_f(x, y; q) := f^{-1} (qf(x) + (1 - q) f(y)) \qquad (x, y \in I),$$

where $f: I \to \mathbb{R}$ is again a continuous strictly monotone function and $0 < q < < 1, \ q \neq \frac{1}{2}$. Unlike the first two means, the weighted quasi-arithmetic mean is a non-symmetric quasi-arithmetic mean.

A common generalization of these means is the generalized quasi-arithmetic mean introduced by J. Matkowski [2].

Let $f,g:I\to\mathbb{R}$ be continuous strictly increasing or decreasing functions. Then the function

$$A_{f,g}(x,y) := (f+g)^{-1} (f(x) + g(y)) \qquad (x,y \in I),$$

is called generalized quasi-arithmetic mean (see Matkowski [2] and Matkowski-Páles [3]). One can see easily that

$$\min \{x, y\} < A_{f,q}(x, y) < \max \{x, y\}$$

is satisfied for all $x \neq y$ and this family of quasi-arithmetic means contains all the previous cases.

For example, if 0 < q < 1 with the notations f(x) := qh(x), g(x) := (1-q)h(x), where $h: I \to \mathbb{R}$ is a continuous strictly monotone function, we get that

$$A_{f,g}(x,y) = (qh + (1-q)h)^{-1} (qh(x) + (1-q)h(y)) = = h^{-1} (qh(x) + (1-q)h(y)) = A_h(x,y;q)$$
 (x, y \in I).

The symmetry of $A_{f,q}$ means that

$$(f+g)^{-1} (f(x) + g(y)) = (f+g)^{-1} (f(y) + g(x))$$

or

$$(f-g)(x) = (f-g)(y) \ (x, y \in I).$$

From this one can see that if $A_{f,g}$ is non-symmetric (that is $A_{f,g}(x,y) \neq A_{f,g}(y,x)$ for all $x \neq y$), then f-g is strictly monotone and reversely, if f-g is strictly monotone, then $A_{f,g}(x,y)$ is non-symmetric.

Our investigation starts with the function

(1)
$$N(x,y) := \alpha x + \beta y + \gamma M(x,y) \qquad (x,y \in I),$$

where $\alpha\beta\gamma\neq 0$, $\alpha\neq\beta$ and $M:I^2\to I$ is a non-symmetric generalized quasiarithmetic mean. $N:I^2\to\mathbb{R}$ is the sum of two non-symmetric functions $\alpha x+\beta y$ and $\gamma M(x,y)$.

We examine the following question: Under what conditions is the function N symmetric?

2. The differentiable case

We need the following.

Definition 1. Let $I \subset \mathbb{R}$ be non-empty open interval. Let $D^1(I)$ denote the pairs of functions (f,g) for which the functions are differentiable on I and f'(x)g'(x) > 0 for all $x \in I$.

If $(f,g) \in D^1(I)$, then f and g are continuous strictly increasing or decreasing functions.

Lemma 1. If $(f,g) \in D^1(I)$, then

$$\partial_1 A_{f,g}(x,x) = \frac{f'(x)}{f'(x) + g'(x)} \qquad (x \in I).$$

Proof. Differentiating the equation

$$f(x) + g(y) = (f+g) (A_{f,q}(x,y))$$

with respect to x we obtain

$$f'(x) = (f+g)'(A_{f,g}(x,y)) \partial_1 A_{f,g}(x,y).$$

With the substitution y = x we get our statement.

Theorem 1. Suppose that $(f,g) \in D^1(I)$ and f-g is strictly monotone. Moreover let $\alpha\beta\gamma \neq 0$ and $\alpha \neq \beta$. If function

(2)
$$N(x,y) := \alpha x + \beta y + \gamma A_{f,g}(x,y) \qquad (x,y \in I),$$

satisfies symmetry equation

$$(3) N(x,y) = N(y,x) (x,y \in I),$$

then

$$f(x) = \frac{1+A}{1-A}g(x) + B$$
 $(x \in I),$

where for the constant $A := \frac{\beta - \alpha}{\gamma}$, we have $A \in]-1,1[\setminus \{0\} \text{ and } B \text{ is an arbitrary constant.}]$

Proof. From $A_{f,g}(y,x) = A_{g,f}(x,y)$ and symmetry equation (3) we get that

(4)
$$A_{f,g}(x,y) - A_{g,f}(x,y) = A(x-y) \quad (x,y \in I).$$

120 Z. Daróczy

Since the generalized quasi-arithmetic mean is a strict mean, inequality |A| < 1 holds and $A \neq 0$, that is, $A \in]-1,1[\setminus \{0\}.$

Differentiating equation (4) with respect to x and using Lemma 1 we get, that

$$\frac{f'(x)}{f'(x) + g'(x)} - \frac{g'(x)}{g'(x) + f'(x)} = A \qquad (x \in I).$$

Hence

$$f'(x) = \frac{1+A}{1-A}g'(x)$$
 $(x \in I),$

therefore by integration

$$f(x) = \frac{1+A}{1-A}g(x) + B$$
 $(x \in I),$

with a constant B.

Theorem 2. Suppose that $(f,g) \in D^1(I)$ and f-g is strictly monotone. Moreover let $\alpha\beta\gamma \neq 0$ and $\alpha \neq \beta$. If function

$$N(x,y) := \alpha x + \beta y + \gamma A_{f,g}(x,y) \qquad (x,y \in I)$$

is symmetric (that is equation (3) holds), then

$$A_{f,g}(x,y) = h^{-1}(qh(x) + (1-q)h(y)) = A_h(x,y;q)$$
 $(x,y \in I)$

where $h: I \to \mathbb{R}$ defined by

$$h(x) := \frac{2g(x)}{1 - A} + B \qquad (x \in I),$$

is continuous and strictly monotone, $A = \frac{\beta - \alpha}{\gamma}$, for the constant $q := \frac{1+A}{2}$ we have $q \in]0,1[\setminus \left\{\frac{1}{2}\right\}]$ and B is an arbitrary constant.

Proof. According to Theorem 1

$$N(x,y) = \alpha x + \beta y + \gamma A_{f,g}(x,y) =$$

$$= \alpha x + \beta y + \gamma \left(\frac{1+A}{1-A}g + B + g\right)^{-1} \left(\frac{1+A}{1-A}g(x) + B + g(y)\right) =$$

$$= \alpha x + \beta y + \gamma \left(\frac{2g}{1-A} + B\right)^{-1} \left(\frac{1+A}{1-A}g(x) + g(y) + B\right) =$$

$$= \alpha x + \beta y + \gamma h^{-1} \left(\frac{(1+A)(1-A)(h(x) - B)}{(1-A)2} + \frac{(h(y) - B)(1-A)}{2} + B\right) =$$

$$= \alpha x + \beta y + \gamma h^{-1} \left(\frac{1+A}{2} h(x) + \frac{1-A}{2} h(y) \right) =$$

$$= \alpha x + \beta y + \gamma h^{-1} \left(q h(x) + (1-q) h(y) \right) = \alpha x + \beta y + \gamma A_h \left(x, y; q \right).$$
Here $A \in]-1, 1[\setminus \{0\} \text{ and hence } q \in]0, 1[\setminus \{\frac{1}{2}\}.$

Summarizing Theorems 1 and 2, we can say that (in the case of $(f,g) \in D^1(I)$), if the function

$$N(x,y) := \alpha x + \beta y + \gamma A_{f,g}(x,y) \qquad (x,y \in I)$$

is symmetric then its last term (the mean $A_{f,g}$) is necessarily a weighted quasi-arithmetic mean.

Problem and Conjecture: If for the pair (f,g) holds that $f,g:I\to\mathbb{R}$ are continuous strictly increasing (or decreasing) functions and function $N:I^2\to\mathbb{R}$ defined in (2) (with $\alpha\beta\gamma\neq0$ and $\alpha\neq\beta$) is symmetric, then in case of the strict monotonicity of function f-g, $A_{f,g}$ is a non-symmetric weighted quasi-arithmetic mean. To prove this (with the previously used notations) it would be enough to show that the solutions of the functional equation

$$A_{f,g}(x,y) - A_{g,f}(x,y) = A(x-y)$$
 $(x, y \in I),$

satisfy $(f,g) \in D^1(I)$. In this case the statement would be a consequence of Theorem 2.

Problem 1. If functional equation (4) is satisfied, where $f, g: I \to \mathbb{R}$ are continuous strictly increasing (or decreasing) functions, f-g is strictly monotone and $A \in]-1,1[\setminus \{0\}$, then there exists a continuous strictly monotone function $h: I \to \mathbb{R}$ such that

$$A_{f,g}(x,y) = A_h(x,y;q),$$

where $q = \frac{1+A}{2} \in]0,1[\setminus \left\{\frac{1}{2}\right\}.$

Problem 2. If f and g satisfy assumptions in Problem 1, then $(f,g) \in D^1(I)$.

We need the following definition.

Definition 2. Let $\mathcal{H}(I)$ be the family of function $h: I \to \mathbb{R}$ which have one of the following forms:

- (i) h(x) = ax + b, $(x \in I)$, where $a \neq 0$ and b are arbitrary constants;
- (ii) $h(x) = a\sqrt{x+t} + b$, $(x \in I)$ if there exists a $t \in T_+(I) := \{t | I + t \subset \mathbb{R}_+\}$, where $a \neq 0$ and b are arbitrary constants;

122 Z. Daróczy

(iii) $h(x) = a\sqrt{-x+t} + b$, $(x \in I)$ if there exists a $t \in T_{-}(I) := \{t | -I + t \subset \mathbb{R}_{+}\}$, where $a \neq 0$ and b are arbitrary constants.

If $T_{+}(I) \cup T_{-}(I) = \emptyset$, that is, $I = \mathbb{R}$, then only the case (i) is possible.

Now we can state our theorem which closes the symmetric case (see Daróczy [1]).

Theorem 3. Let $I \subset \mathbb{R}$ be non-empty open interval and $\alpha\beta\gamma \neq 0$ and $\alpha \neq \beta$. Suppose that $(f,g) \in D^1(I)$ and f-g is strictly monotone. Then the function

$$N(x,y) := \alpha x + \beta y + \gamma A_{f,g}(x,y) \qquad (x,y \in I)$$

is symmetric, i.e. satisfies symmetry equation (3) if and only if

$$q:=\frac{\gamma+\beta-\alpha}{2\gamma}\in]0,1[\backslash\left\{\frac{1}{2}\right\}$$

and there exists $h \in \mathcal{H}(I)$ such that

(5)
$$f(x) = qh(x) \quad and \quad g(x) = (1-q)h(x) \quad (x \in I).$$

Remark 1. If the answers for Problems 1 and 2 are affirmative, then instead of $(f,g) \in D^1(I)$ it is enough to suppose that $A_{f,g}$ in (2) is a non-symmetric generalized quasi-arithmetic mean.

References

- [1] **Daróczy, Z.,** Mean values and functional equations, *Differential Equations and Dinamical Systems*, **17** (2009), 105–113.
- [2] Matkowski, J., Generalized weighted quasi-arithmetic means, Aequationes Math., 79 (2010), 203–212.
- [3] Matkowski, J. and Zs. Páles, Characterization of generalized quasi-arithmetic means, *Acta Sci. Math. (Szeged)*, 81 (2015), 447–456.

Z. Daróczy

Department of Analysis
Institute of Mathematics
University of Debrecen
P. O. Box 400
4002 Debrecen
Hungary
daroczy@science.unideb.hu