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Abstract. In this paper we investigated the stability of the system pa-
rameters of the adaptive rational transformation, i.e. how specific pertur-
bation of the inverse poles affects the approximation error. We provided
some estimations and sufficient confidence intervals on the perturbation of
the absolute values of the inverse poles with respect to the approximation
error. The research was motivated by biomedical (primarily ECG) sig-
nal processing problems, where the results may be utilized to improve the
approximation and representation techniques.

1. Introduction

Rational systems, like Malmquist–Takenaka, Laguerre, and Kautz systems
are well known and frequently used in system and control theory, and signal
processing. For details, we refer the reader to [4, 8]. In this paper, we fo-
cus on the signal processing applications, namely the modelling with rational
transformation, as introduced in [6]. Here, the signal is modelled as the linear
combination with specific rational functions, i.e. it is approximated by the
orthogonal projection onto a subspace spanned by rational systems. The pre-
vious results in biomedical signal processing prove that the adaptive rational
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transformation is an effective tool for ECG and EEG signal processing, includ-
ing modelling [5, 7], compression [10], and parameter extraction [1, 2, 3]. The
most important advantage of the rational systems, compared to other trans-
formation methods, is its flexibility and adaptivity. Namely, we have arbitrary
number of free system parameters at hand. These parameters, that directly
define the system, allow the adaptation to the specific signals. This, e.g. in
case of ECG and EEG signals, leads to an efficient and advantageous represen-
tation: low-dimension approximations of the signals that contain the relevant
details, and reflect directly to the morphological behavior of them.

The key issue of the rational transformation is the identification of the sys-
tem parameters, the so-called inverse poles. In general, pole identification can
be addressed as a non-linear optimization problem that can be solved using well-
known optimization methods, like Monte-Carlo, gradient methods [11], Hyper-
bolic Nelder–Mead [7, 12], Hyperbolic Particle Swarm Optimization [9, 10], etc.
Although these methods are usually efficient in practice, they can only provide
an estimation of the actual optimum. In this paper we discuss some questions
about the stability of the inverse poles around the theoretical optimum, i.e.
how the perturbation of the inverse poles affects the rational approximation.
To this order, we give estimations of the approximation error based on the
perturbation of the inverse poles. Our motivations came from the ECG signal
processing practice, namely the signal compression [10], heartbeat classification
[1], and waveform segmentation problems [2, 3]. In these problems, approxi-
mation error plays a direct or indirect role: the utilization of the non-optimal
inverse pole combination may affect the rational model curves, the quality of
the compression, the accuracy of morphological feature extraction (heartbeat
classification) and fiducial point detection (waveform segmentation). However,
that practical experiences show that the rational system is only partially sen-
sitive to the perturbation of the absolute values of the inverse poles. In this
paper we investigate the acceptable perturbation of these absolute values cor-
responding to a given level of approximation error. Towards this, we introduce
two general approximation problems, and we provide some corresponding for-
mulae and sufficient confidence intervals for the perturbation. The results may
have direct impacts in the applications of rational transformation for ECG
processing problems. Namely, the quantization and pole identification tech-
niques may be fine-tuned and time-optimized according to the expected level
of approximation error.

2. Rational approximation

Let us consider a least squares approximation of complex analytic, square
integrable functions on the unit circle (torus) T, i.e. in the H2(T) Hardy-space
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along with the usual scalar product

〈F,G〉 := 1

2π

π∫

−π

F (eit)G(eit) dt
(
F,G ∈ H2(T)

)
.

We discuss the approximation by means of an orthogonal projection onto spe-
cific subspaces of rational functions. To this order, let us define the basic
rational functions on the closed unit disk D as

ra(z) :=
1

1− az
, ra,k(z) := rka(z) =

1

(1− az)k
(z ∈ D),

where the free parameter a ∈ D is the so-called inverse pole, and k ∈ N+ is
the order of the functions. For a signal processing purpose, it is enough to
take the restriction of these functions to the unit circle: ra,k(e

it) (t ∈ [−π, π)).
The elementary rational functions are the linear combinations of basic rational
functions having the same inverse pole a ∈ D, up to a given order m ∈ N+

(multiplicity):
m∑

k=1

ck · rka (ck ∈ C; k = 1, 2, . . . ,m).

We remark that every proper rational function can be expressed as the linear
combination of basic rational functions, i.e. the set R0 of proper rational
functions is

R0 = span {rka : a ∈ D \ {0}; k ∈ N+}.
Moreover, R0 is dense in H2(T). We consider the orthogonal projection onto
the subspace

Sa
m := span {rkj

aj
: j = 1, 2 . . . , n; kj = 1, 2, . . . ,mj} ⊂ H2(T),

where n ∈ N+ is the number of the given (distinct) inverse poles
a = (a1, . . . , an) ∈ Dn, and m = (m1, . . . ,mn) ∈ (N+)n is the multiplicities as-
sociated with the inverse poles. Since Sa

m is a finite-dimensional subspace of the
Hilbert-space H2(T), thus the orthogonal projection always exists. It is natural
to take an orthonormal basis in Sa

m, that can be generated using the Gram–
Schmidt orthogonalization method applied to the linearly independent genera-
tor set of basic rational functions. The orthonormal basis can be expressed in an
explicit way by the Malmquist–Takenaka (MT) functions. To this order, define
the (not necessarily distinct) sequence of inverse poles b = (b0, . . . , bN−1) ∈ DN ,
so that each inverse pole aj appears mj times in the sequence, i.e.

N :=

n∑
j=1

mj ,
N−1∑
k=0

bk=aj

1 = mj (j = 1, 2 . . . , n).
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Then the MT system generated by b is of the form

Φb
k(z) :=

√
1− |bk|2

1− bkz

k−1∏
j=0

Bbj (z) (z ∈ D; k = 0, 1, . . . , N − 1),

where Ba is the Blaschke function of inverse pole a ∈ D:

Ba(z) :=
z − a

1− az
(z ∈ D).

The MT system above is orthonormal with respect to the scalar product of
H2(T), and spans the subspace Sa

m. Thus the orthogonal projection of a func-
tion f ∈ H2(T) can be expressed as an MT-Fourier partial sum:

f ≈
N−1∑
k=0

〈f,Φb
k〉Φb

k.

3. Approximation problems

In the following, we investigate two approximation problems involving ra-
tional systems. In both cases, we consider two subspaces of basic or elementary
rational functions: S1, S2 ⊂ R0, and we investigate the least squares approx-
imation of functions f ∈ S1 with respect to S2. This configuration simulates
the signal processing approach, where we model the signal (or its parts) by
basic or elementary rational functions, but only an estimation of the optimal
pole combination is given by an optimization method. Here, S1 and S2 repre-
sents the subspaces generated by the optimal and the estimated inverse poles,
respectively. Later, we discuss the connection between the approximation error
and the difference between the optimal and estimated inverse poles, in some
special cases. Let us express the approximation error in a relative way, in terms
of percent root difference (PRD):

PRD(f, g) :=
‖f − g‖2
‖f‖2

(
f, g ∈ H2(T)

)
.

Here, if g ∈ S2 is the least squares approximation of f ∈ S1 with respect to S2,
then (f − g) and g are orthogonal, and

PRD2(f, g) =
‖f − g‖22
‖f‖22

=
‖f‖22 − ‖g‖22

‖f‖22
= 1− ‖g‖22

‖f‖22
.
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We remark that we focus on the case when S1 and S2 are generated by
basic rational functions of the same order or elementary functions with the
same multiplicity, but with different inverse poles. These fit the ECG signal
processing problems that served as a motivation, where the waveforms of the
ECG heartbeats were modelled by elementary rational functions. Another
interesting questions could be the combination of multiple inverse poles, and
the variation of the multiplicities.

Let us introduce the two approximation problems investigated.

Approximation problem A. Approximate a signal modelled by a single basic
rational function of a given inverse pole and order, by another basic rational
function of the same order but different inverse pole.

Let a, b ∈ D \ {0} be distinct inverse poles, n ∈ N+, c ∈ C \ {0}, and consider
the approximation

f(z) = c · rna (z) ≈ g(z) = d · rnb (z) (z ∈ T),

where the coefficient d ∈ C is determined by means of least squares:

〈f, rnb 〉 = 〈g, rnb 〉 =⇒ c · 〈rna , rnb 〉 = d · 〈rnb , rnb 〉 =⇒ d = c · 〈r
n
a , r

n
b 〉

〈rnb , rnb 〉
.

Then the relative error of the approximation:

PRD2
a,b,n = 1− |d|2 · 〈rnb , rnb 〉

|c|2 · 〈rna , rna 〉
= 1− |〈rna , rnb 〉|2

〈rna , rna 〉 · 〈rnb , rnb 〉
.

Approximation problem B. Approximate a signal modelled by an elemen-
tary rational function of a given inverse pole and multiplicity, by another ele-
mentary rational function of the same multiplicity but different inverse pole.

Let a, b ∈ D \ {0} be distinct inverse poles having the same multiplicitym ∈ N+,
c ∈ Cm \ {0} and consider the approximation

f(z) =

m∑
k=1

ck · rka(z) ≈ g(z) =

m∑
k=1

dk · rkb (z) (z ∈ T),

where the coefficients d ∈ Cm are determined by means of least squares:

〈f, r�b〉 = 〈g, r�b〉 =⇒
m∑

k=1

ck · 〈rka , r�b〉 =
m∑

k=1

dk · 〈rkb , r�b〉 (� = 1, 2, . . . ,m) =⇒

=⇒ G(a, b)c = G(b, b)d =⇒ d = G−1(b, b)G(a, b)c,
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where G : (D \ {0})2 → Cm×m is the twovariable Gram matrix of the basic
rational functions:

[G(a, b)]�,k := 〈rka , r�b〉 (k, � = 1, 2, . . . ,m).

Here we mention that G(a, b) is a Hermitian matrix. Then the relative error of
the approximation:

PRD2
a,b,m(c) = 1− 〈G(b, b)d, d〉

〈G(a, a)c, c〉
= 1− 〈G(a, b)G−1(b, b)G(a, b)c, c〉

〈G(a, a)c, c〉
.

4. Scalar products, Gram matrices

The relative approximation error in (A) and (B) is expressed using scalar
products of the basic rational functions, and the Gram matrices involving the
scalar products. Here we provide formulae for the scalar products with Gaus-
sian hypergeometric, and rational functions, and then we give the Cholesky-
decomposition of the Gram matrix, in a special case.

Theorem 1. Let a, b ∈ D \ {0}, n,m ∈ N+, then

〈rna , rmb 〉 = 2F1(n,m, 1; ab),

where 2F1 is the Gaussian hypergeometric function.

Proof. The series expansion of rna on the unit disk is given as

rna (z) =

(
1

1− az

)n

=
∞∑
k=0

(
n+ k − 1

k

)
akzk (z ∈ D).

If a ∈ D \ {0}, then the series converges absolutely for every z ∈ D, thus the
scalar product takes the form

〈rna , rmb 〉 =
∞∑
k=0

∞∑
�=0

(
n+ k − 1

k

)(
m+ �− 1

�

)
akb�〈zk, z�〉 =

[based on the ortogonality of the trigonometric system: 〈zk, z�〉 = δk�]

=
∞∑
k=0

(
n+ k − 1

k

)(
m+ k − 1

k

)
(ab)k =

∞∑
k=0

(n)k(m)k
(1)k

(ab)k

k!
= 2F1(n,m, 1; ab),

where (x)k is the (increasing) Pochhammer symbol:

(x)k = x(x+ 1) . . . (x+ k − 1) = k! ·
(
x+ k − 1

k

)
(x ∈ R). �
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Corollary 1.1. The Gram matrix function G defined in (B) can actually be
considered as a function of one variable, also denoted as G:

[G(a, b)]kl = 2F1(k, l, 1; ab) =⇒ G(a, b) =: G(ab) (a, b ∈ D \ {0}).

Theorem 2. Let |z| < 1, n,m ∈ N+, then

2F1(n,m, 1; z) =
P (z)

(1− z)n+m−1
,

where P is a polynomial of order min{n− 1,m− 1}. Specially,

2F1(n, n, 1; z) =

n−1∑
k=0

(
n− 1

k

)2

zk

(1− z)2n−1
.

Proof. The proof is straitforward based on the Euler-transformation of
hypergeometric functions:

2F1(n,m, 1; z) = (1− z)1−n−m
2F1(1− n, 1−m, 1, z) (|z| < 1).

Here the arguments (1− n) and (1−m) are both nonpositive integers, so the
expression 2F1(1− n, 1−m, 1, z) reduces to a polynomial of order
min{n− 1,m− 1} in the variable z. �

We note that another way to explore the scalar products is based on the
discretization property of the rational system [5]. Namely, we can construct a
sampling of the interval [−π, π) and a proper discrete scalar product that is
equivalent to the scalar product of H2(T) on the subspaces generated by the
rational systems. Moreover, depending on a, b ∈ D \ {0}, an explicit expres-
sion of the discretization points, and the scalar product can be given with the
Blaschke functions. Although this concept results the same formulae as above,
it is important to express the Gram matrix. Namely, in the sense of the scalar
products, we can handle the basic rational functions and the MT functions as
finite vectors, sampled on the discretization points above.

Theorem 3. Let x ∈ (0, 1) and m ∈ N+. Then the Cholesky decomposition of
Gram matrix G(x) ∈ Rm×m is:

G(x) = L(x)LT (x), LT (x) =
1√
1− x

D(
√
x)PD

(
1

1− x

)
,

where the parametric diagonal matrix D : R → Rm×m is:

D(x) = diag(1, x, x2, . . . , xm−1) (x ∈ R),
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and P ∈ Rm×m is the upper Pascal matrix:

P =




1 1 1 1 1 · · · 1
1 2 3 4 · · · m− 1

1 3 6 · · ·
(
m−1
2

)
1 4 · · ·

(
m−1
3

)
1 · · ·

(
m−1
4

)
. . .

...
1




.

Proof. Let a ∈ D \ {0}, and consider the rational system {rka : k = 1, . . . ,m},
i.e. the MT (or Laguerre) system generated by the pole sequence a = (a, . . . , a) ∈
∈ Dm:

Φa
k(z) =

√
1− |a|2
1− az

Bk
a(z) (z ∈ T; k = 0, 1 . . . ,m− 1).

Based on the connection between the basic rational and Blaschke functions:

Ba =
(1− |a|2)ra − 1

a
,

the funtions Φa
k can be expressed with ra:

Φa
k =

√
1− |a|2raBk

a =
(−1)k

√
1− |a|2

ak

k∑
�=0

(
k

�

)
(1− |a|2)�(−1)�r�+1

a .

Equivalently, written in a matrix form:

[Φa
0 Φa

1 · · · Φa
m−1] = [ra r2a · · · rma ] · U,

where

U =
√
1− |a|2D(1− |a|2)EPED

(
1

a

)
, E = D(−1).

Based on the orthogonality of the MT system:

I = U∗G(a, a)U =⇒ G(a, a) = (U∗)
−1

U−1.

Using the P−1 = EPE inverse formula of the Pascal matrix:

U−1 =
1√

1− |a|2
D(a)PD

(
1

1− |a|2

)
.
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Finally, combine the term D(a) in U−1, and the term (D(a))
∗
= D(a) in

(U∗)
−1

=
(
U−1

)∗
: D(a)D(a) = D2(|a|). Thus, the Cholesky decomposition

of G(a, a) = G(|a|2) is given by

LT (|a|2) = 1√
1− |a|2

D(|a|)PD

(
1

1− |a|2

)
,

where it is easy to verify that LT ∈ Rm×m is an upper triangular matrix with
positive diagonal elements. The actual statement is given by the substitution
x = |a|2 ∈ (0, 1). �

Corollary 3.1. If the complex argument of the inverse poles a, b ∈ D \ {0} are
the same (especially if a = b), then the Cholesky decomposition of the Gram
matrix G(a, b) = G(ab) = G(|ab|):

G(|ab|) = L(|ab|)LT (|ab|), LT (|ab|) = 1√
1− |ab|

D(
√
|ab|)PD

(
1

1− |ab|

)
.

5. Pole stability analysis

In the following, we provide estimations on the approximation error based
on the perturbation of the inverse poles as introduced in approximation problem
(A) and (B). These estimations lead to sufficient conditions on the perturbation.

In (A) and (B), we introduced the approximation problems in a general
way. Now, we discuss restricted cases motivated by signal processing (primar-
ily ECG processing) applications. These applications show that the rational
systems seem to be more sensitive to the perturbation of the complex argument
than the absolute value of the inverse poles. Theoretical reasons also explain
this behavior. Namely, the peak locations of the basic rational functions are
defined by the argument of their inverse pole, while the absolute values are
accountable for the shapes. Based on the time-localization property of the
basic and elementary rational functions, we can conclude that small changes
of the arguments can lead to the rapid increase of the approximation error.
Meanwhile, as the practical experiences show, the small changes of the ab-
solute values may be compensated by the coefficients of the approximation.
Therefore, our interest is to give a confidence interval of the perturbation of
the absolute values of the inverse poles, based on the acceptable change of the
approximation error. To this order, we restrict the approximation problems
to the variations of the absolute values only, i.e. we consider the case when
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the complex arguments of a, b ∈ D \ {0} are the same. We note that based on
Theorem 1, only the product ab matters, thus we can assume that the common
complex argument is 0, i.e. a and b are real numbers in the interval (0, 1).
Considering the absolute values only, it is reasonable to introduce further re-
strictions on them. ECG signal processing experiences [1, 3] show that neither
too small neither too big absolute values are feasible in practice. Namely, if the
absolute value is close to 0 or 1, than the corresponding rational function will
become too wide or too narrow (i.e. its effective support widens or narrows,
respectively) that do not fit the shape of the ECG waveforms. Moreover, as
the absolute values tend to 0, the system tends to the trigonometric system,
and due to the discretization, numerical uncertainty arise close to 1. Therefore,
we restrict the absolute values of the inverse poles to the [0.5, 1) interval that
usually meets the practical goals.

Let us state the two estimations and sufficient conditions provided.

Theorem 4. Let a ∈ [0.5, 1), h ∈ (0, a), b = a− h ∈ (0, 1), n ∈ N+, and con-
sider the approximation problem (A). Then

h <
1− a2√

4(n− 1)2(1− a2)2 + (2n− 1)
ε

is sufficient for PRDa,b,n < ε < 1.

Proof. Based on Theorem 1, since a, b are real numbers:

PRD2
a,b,n = 1− 〈rna , rnb 〉2

〈rna , rna 〉 · 〈rnb , rnb 〉
= 1− 2F1(n, n, 1; ab)

2

2F1(n, n, 1; a2) · 2F1(n, n, 1; b2)
=

[using Theorem 2]

= 1−

(
n−1∑
k=0

(
n− 1

k

)2

(ab)k

)2

(
n−1∑
k=0

(
n− 1

k

)2

a2k

)
·

(
n−1∑
k=0

(
n− 1

k

)2

b2k

) ·
(
(1− a2)(1− b2)

(1− ab)2

)2n−1

.

Let Z and W be the numerator and the denominator of the first term, respec-
tively:

Z =




n−1∑
k=0

(
n− 1

k

)2

︸ ︷︷ ︸
=:αk

(ab)k




2

=
n−1∑
k=0

n−1∑
j=0

αkαja
k+jbk+j =
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=
n−1∑
k=0

α2
ka

2kb2k + 2
n−2∑
k=0

n−1∑
j=k+1

αkαja
k+jbk+j ,

W =

(
n−1∑
k=0

αka
2k

)
·

(
n−1∑
k=0

αkb
2k

)
=

n−1∑
k=0

n−1∑
j=0

αkαja
2kb2j =

=

n−1∑
k=0

α2
ka

2kb2k +
n−2∑
k=0

n−1∑
j=k+1

αkαj(a
2kb2j + a2jb2k).

Then

W − Z =

n−2∑
k=0

n−1∑
j=k+1

αkαj(a
2kb2j − 2ak+jbk+j + a2jb2k) =

=
n−2∑
k=0

n−1∑
j=k+1

αkαj(a
jbk − akbj)2 =

n−2∑
k=0

n−1∑
j=k+1

αkαja
2kb2k(aj−k − bj−k)2 ≤

[using am − bm = (a− b)(am−1 + am−2b+ · · ·+ abm−2 + bm−1) ≤
≤ h ·m · am−1 ≤ 2 · h ·m · am, with the substitution m := j − k]

≤ 4h2
n−2∑
k=0

n−1∑
j=k+1

αkαja
2kb2k(j − k)2a2(j−k) ≤

≤ 4h2(n− 1)2
n−2∑
k=0

n−1∑
j=k+1

αkαja
2jb2k ≤ 4h2(n− 1)2W,

thus
Z

W
=

W − (W − Z)

W
≥ 1− 4(n− 1)2h2.

Estimate the second term:

(
(1− a2)(1− b2)

(1− ab)2

)2n−1

=

(
1− (a− b)2

(1− ab)2

)2n−1

≥

[using the Bernoulli inequality with −(a− b)2/(1− ab)2 ≥ −1]

≥ 1− (2n− 1)
(a− b)2

(1− ab)2
≥ 1− (2n− 1)

(1− a2)2
h2.

Then, if h is small enough:

PRD2
a,b,n ≤ 1−

(
1− 4(n− 1)2h2

)(
1− (2n− 1)

(1− a2)2
h2

)
=
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=

(
4(n− 1)2 +

(2n− 1)

(1− a2)2

)
h2 − 4(n− 1)2

(2n− 1)

(1− a2)2
h4 ≤

=

(
4(n− 1)2 +

(2n− 1)

(1− a2)2

)
h2,

thus, a sufficient condition for PRDa,b,n < ε:

h <
ε√

4(n− 1)2 +
(2n− 1)

(1− a2)2

=
1− a2√

4(n− 1)2(1− a2)2 + (2n− 1)
ε. �

Fig. 1. demonstrates the tolerable error rate, i.e. the upper limit to the
perturbation compared to the expected level of approximation error:

en(a) :=
1− a2√

4(n− 1)2(1− a2)2 + (2n− 1)
, h < en(a)ε.

a

0.5 0.6 0.7 0.8 0.9 1

e
n
(a
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

n = 1
n = 2
n = 3
n = 4

Figure 1. The tolerated error rate depending on the absolute value of the
inverse pole, for n = 1, 2, 3, 4.

Theorem 5. Let a ∈ [0.5, 1), h ∈ (0, a), b = a− h ∈ (0, 1), m ∈ N+, and con-
sider the approximation problem (B). Then

h <
1− a2√

3m2 − 5m+ 3
ε

is suffucient for PRDa,b,m < ε < 1.
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Proof. Similarly to Theorem 4, look for an estimation of PRD of the form:

PRD2
a,b,m < g(a)h2 ≤ ε2

with a proper function g : (0, 1) → R+. The estimation holds for a coefficient
c ∈ Cm \ {0}, if:

PRD2
a,b,m(c) < g(a)h2 ⇐⇒ 1− PRD2

a,b,m(c) > 1− g(a)h2 ⇐⇒

⇐⇒ 〈G(ab)G−1(b2)G(ab)c, c〉
〈G(a2)c, c〉

> 1− g(a)h2 ⇐⇒

[using that G(a2) is positive definite, and assuming that 1− g(a)h2 > 0]

⇐⇒
〈(
G(ab)G−1(b2)G(ab)− (1− g(a)h2)G(a2)

)
c, c

〉
> 0.

Let c = L−T (a2)γ with a proper γ ∈ Cm{\0}, where LT (a2) is the Cholesky de-
composition of G(a2), as in Theorem 3. Then the statement, expressed with γ:

〈(
L−1(a2)G(ab)G−1(b2)G(ab)L−T (a2)− (1− g(a)h2)I

)
γ, γ

〉
> 0

The quadratic form is positive for every c ∈ Cm{\0}, or equivalently for every
γ ∈ Cm{\0}, if and only if the symmetric generator matrix is positive definit,
i.e.

λmin

(
L−1(a2)G(ab)G−1(b2)G(ab)L−T (a2)− (1− g(a)h2)I

)
> 0 ⇐⇒

λmin

(
L−1(a2)G(ab)G−1(b2)G(ab)L−T (a2)

)
> 1− g(a)h2.

where λmin denotes the smallest eigenvalue. The matrix on the left can be
expressed as AAT , with

A = L−1(a2)G(ab)L−T (b2).

Here we again note the symmetric positive definite property ofG(a2) andG(ab).
Then an equivalent condition can be given using the singular values of A:

λmin

(
AAT

)
= σ2

min(A) =
1

σ2
max (A

−1)
> 1− g(a)h2.

Express A−1 using the Cholesky decompositions, as in the proof of Theorem 3:

A−1 = LT (b2)G−1(ab)L(a2) = LT (b2)L−T (ab)L−1(ab)L(a2) =

=
1− ab√

(1− a2)(1− b2)
D(b)PD

(
1− ab

1− b2

)
EPD

(
1

ab

)
PTED

(
1− ab

1− a2

)
PTD(a).
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In order to simplify the expression, notice that the elements of EPD(x)EP
(x ∈ (0, 1)) can be expressed as:

[EPD(x)EP ]ij =

(
j

i

)
xi(1− x)j−i (i ≤ j).

Specially, with the substitution x = (1− ab)/(1− b2):

[
EPD

(
1− ab

1− b2

)
EP

]

ij

=

(
j

i

)
(1− ab)i(a− b)(j−i)bj−i

(1− b2)j
(i ≤ j),

and
[
ED(b)PD

(
1− ab

1− b2

)
EPD

(
1

b

)]

ij

=

(
j

i

)
(1− ab)i(a− b)(j−i)

(1− b2)j
(i ≤ j),

thus

ED(b)PD

(
1− ab

1− b2

)
EPD

(
1

b

)
= D

(
1− ab

a− b

)
PD

(
a− b

1− b2

)
.

Similarly

ED

(
1

a

)
PTD

(
1− ab

1− a2

)
EPTD(a) = D

(
a− b

1− a2

)
PTD

(
1− ab

a− b

)
.

Then A−1 takes the form:

A−1 =
1− ab√

(1− a2)(1− b2)
ED

(
1− ab

a− b

)
PD

(
(a− b)2

(1− a2)(1− b2)

)
EPTD

(
1− ab

a− b

)
.

Let

t =
a− b√

(1− a2)(1− b2)
, u =

1− ab√
(1− a2)(1− b2)

,

then 1 + t2 = u2, and

A−1 = uED(u)D

(
1

t

)
PD(t)

︸ ︷︷ ︸
=:B

ED(t)PTD

(
1

t

)

︸ ︷︷ ︸
=BT

D(u) = uED(u)BEBTD(u).

The greatest singular value of A−1 can be estimated as:

σmax

(
A−1

)
=

∥∥A−1
∥∥
2
≤ u‖D(u)‖22‖BEBT ‖2 = u2m−1‖BEBT ‖2 ≤

[using 2σmax(XY T ) ≤ σmax(X
TX + Y TY ) with X = BE, Y = B, and

‖M‖ ≤
√
‖M‖1 · ‖M‖∞ = ‖M‖∞ (M ∈ Rm×m symmetric)]
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≤ u2m−1

∥∥∥∥
EBTBE +BTB

2

∥∥∥∥
2

≤ u2m−1

∥∥∥∥
EBTBE +BTB

2

∥∥∥∥
∞

.

Here we skip the side calculations, and provide only the idea and a sketch. The
transformation M �→ EME modifies the sign of the elements of the matrix
M ∈ Rm×m according to a checkerboard pattern. Thus, the transformation
M �→ (EME +M)/2 clears the odd indiced elements of M , according to the
checkerboard pattern. Let us discuss the structure of matrix B, BTB and
EBTBE +BTB. B is a positive upper triangular matrix, and similarly to the
Pascal matrix P , the its diagonals consist of the same exponents of t. More
precisely, B can be expressed in the matrix exponential form

B = etQ, Q =




0 1
0 2

. . .
. . .

0 m− 1
0



.

BTB is positive, and the remaining even indiced elements of EBTBE +BTB
(according to the checkerboard pattern) contain only even exponents of t.
Moreover, its infinity norm is simply the maximum of the row sums, because of
its nonnegativity. According to its structure it is easy to see that maximal row
sum correspond to the last row, where we can prove the following estimation
by induction:

∥∥∥∥
EBTBE +BTB

2

∥∥∥∥
∞

< 1+

(
3m2 − 7m+ 4

2

)
t2+

(
3m2 − 7m+ 4

2

)2

t4+· · · ≤

≤ 1

1− 3m2−7m+4
2 t2

,

if t is small enough. Then

σ2
max

(
A−1

)
<

u2(2m−1)

(
1− 3m2−7m+4

2 t2
)2 =

(1 + t2)2m−1

(
1− 3m2−7m+4

2 t2
)2 <

<
1

(1− t2)2m−1
(
1− 3m2−7m+4

2 t2
)2 ,

and

σ2
min(A) =

1

σ2
max (A

−1)
> (1− t2)2m−1

(
1− 3m2 − 7m+ 4

2
t2
)2

≥

[using the Bernoulli inequality]
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≥ (1− (2m− 1)t2)(1− (3m2 − 7m+ 4)t2) > 1− (3m2 − 5m+ 3)t2 ≥

≥ 1− 3m2 − 5m+ 3

(1− a2)2
h2.

Thus, a sufficient condition for PRDa,b,m < ε:

h <
1− a2√

3m2 − 5m+ 4
ε. �

6. Conclusion, future work

We investigated some stability problems related to the rational approxi-
mation: the perturbation of the absolute values of the inverse poles, assuming
that the other dimensions of the systems are fixed. A linear connection is found
between the relative approximation error and the perturbation: we provided
a sufficient confident interval for the perturbation depending on the expected
approximation level. The results may directly affect the applications of the
adaptive rational transformation.

Further research goals related to the results may include the perturbation
of the complex argument of the inverse poles, the variation of the order and
multiplicities, the perturbation of complex systems with multiple inverse poles,
and to provide necessary conditions, as well.
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