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Abstract. The inversive congruential method for generating uniform pseu-
dorandom numbers is a particulary attractive alternative to linear congru-
ential generators, which show many undesirable regularities. Exponential
sums on inversive congruential pseudorandom numbers are estimates.

1. Introduction

The character of equidistribution the sequence of pseudorandom num-
bers (abbreviate, PRN’s) is defined by the discrepancy of this sequence. Usu-
ally the bound of discrepancy for the sequence of PRN’s, that is generated by
the congruential generator, is estimated by using the Turán–Erdős–Koksma in-
equality, the core of which is the exponential sum with elements of this sequence
in exponent.

In the works of R.G. Stoneham [5] and H. Niederreiter [2]–[4] a certain
exponential sums are investigated which are intimately connected with the
linear congruential PRN’s produced by the linear congruential recursion

yn+1 ≡ ayn + b (mod M), n = 0, 1, 2, . . . , (0 ≤ y1 ≤M),

where a, b,M, y0 ∈ Z, a ≥ 1, M > 1, b, y0 ≥ 0.
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equidistribution.
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H. Niederreiter [4] proved the following assertion

Theorem. Let h ∈ Z, (h,M) = 1, (a,M) = 1, and assume that a belongs to
the exponent ` modulo M . Then, for 1 ≤ N ≤ τ∣∣∣∣∣

N−1∑
n=0

e2πi
hyn
M

∣∣∣∣∣ <
(
Mτ

`

) 1
2
(

2

π
log τ +

3

4

)
,

where τ is the least period length of the sequence {yn}.

The well-known deficiencies of the linear congruential sequences of PRN’s,
such as the relatively coarse lattice structure of these sequences, and as con-
sequence a predictability of elements of the linear congruential generators of
PRN’s.

Let f(x) be an integral-value function and let {yn} be a sequence produced
by the congruential recursion

yn+1 ≡ f(yn) (mod M)

with initial value y0.

Consider the sequence {xn}, xn =
yn
M

, n = 0, 1, . . .. This sequence calls the

sequence of PRN’s if it is an equidistribution on [0, 1), statistical independence
and has ”a large” period length.

In 1986 Eichenauer and Lehn [1] and then Niederreiter [2] have studied a
recursive sequence generated by the recursive relation

yn+1 ≡

{
ay−1n + b (mod p), if (yn, p) = 1

b (mod b), if yn ≡ 0 (mod p)

with some coefficients a ∈ Z∗p, b ∈ Zp, (y0, p) = 1, y−1n is a multiplicative inverse
for yn modulo p.

Such generator of PRN’s calls the inversive generator modulo p. For the
case M = pm, m > 1, we also can consider similar generator if only for all
n = 0, 1, 2, . . . the values yn satisfy the condition (yn, p) = 1. This condition
holds if (a, p) = 1, b ≡ 0 (mod p).

In the sequel we shall always assume also without of explicit mention that
this condition accomplishes.

In the present paper we study some exponential sums over the sequence of
inversive congruential PRN’s {yn} produced by one congruence

(I) yn+1 ≡ ay−1n + b(n) (mod pm),

(II) yn+1 ≡ ay−1n−1y−1n + b(n) (mod pm),
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where b(n) = b + c1n + pµF (n), b = pν0b0, ν0 > 0, (b0, p) = 1, c1 = cy0,
νp(c) = µ0 > ν0 (for (I)), and c1 = c (for (II)); (a, p) = (y0, p) = (y1, p) = 1,
µ > max (ν0, µ0), F (n) ∈ Z[n].

The generator of PRN’s (I) (respectively, (II)) calls the inversive generator
with a variable shift (respectively, the inversive generator of second order with
a variable shift).

The aim of this paper to obtain non-trivial bounds for the exponential sums
of type

S
(j)
` (h;N) =

N−1∑
n=0
yn∈(`)

e2πi
hy
j
n

pm , j = 1, 2; ` = I, II;

K`(h1, h2;N) =

N−1∑
n=0
yn∈(`)

e2πi
h1yn+h2y

−1
n

pm , ` = I, II.

Here we note that the subscription yn ∈ (`) implies the satisfaction of yn
to recursion (`) (` = I or II).

Notations. The letter p denotes a prime number, p ≥ 5. For m ∈ N, the
notation ZM (respectively, Z∗M ) denotes the complete (respectively, reduced)
system of residue modulo M . We write gcd(a, b) = (a, b) for the greatest
common divisor of a and b. For z ∈ Z, (z, p) = 1, let z−1 be the multiplicative
inverse modulo pm. Through νp(A) we denote the p-adic valuation of |A| ∈ Z>0,

throughout the sequel, for brevity, we write eq(n) = e2πi
n
q for integer n.

2. Auxiliary results

Now we consider some lemmas which will be necessary furthermore.

Lemma 1 (see, [7]). Let {yn} be the sequence produced by recursion (I) under

its conditions. Then for k >
[
m
ν0

]
+ 1 the following representations modulo pm

y2k =
A

(k)
0 +A

(k)
1 y0 + · · ·+A

(k)
r−1y

r−1
0

B
(k)
0 +B

(k)
1 y0 + · · ·+B

(k)
r yr0

,

y2k+1 =
C

(k)
0 + C

(k)
1 y0 + · · ·+ C

(k)
r yr0

D
(k)
0 +D

(k)
1 y0 + · · ·+D

(k)
r−1y

r−1
0

hold.
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Moreover, we have

A
(k)
j = aD

(k)
j + bC

(k)
j + F (2k + 2)C

(k)
j−1, j = 0, 1, . . . , r − 1;

A(k)
r = bC(k)

r ;

B
(k+1)
j = C

(k)
j , j = 0, 1, . . . , r;

C
(k+1)
j = aB

(k+1)
j + bA

(k+1)
j + F (2k + 3)A

(k+1)
j , j = 0, 1, . . . , r − 1;

C(k+1)
r = bA(k+1)

r , D
(k+1)
j = A

(k+1)
j , j = 0, 1, . . . , r − 1;

F (u) = c(u+ pµF0(u)), c = c1y
−1
0 .

Corollary. For all k ≥ 2 we have modulo pν

y2k =
kb+

(
1 + a−1 k(k+1)

2 b2 + k(k + 1)c
)
y0(

1 + k(k+1)
2 a−1 b2

)
+ ka−1b2y0 + (2k − 1)ak−1cy20

,

y2k+1 =

(
ak+1 + k(k+1)

2 ak b2 + (k + 1)akb2y0 + (2k + 1)akcy20

)
kakb+

(
ak + k(k+1)

2 ak−1b2 + ak + k(k + 1)c
)
y0

Lemma 2 (see, [6]). Let yn be produced by inversive generator of type (II).
Then the following representations

y3k−1 =
ak + ck−1 b2 k(k−1)2 y0 +

(
ak−1bk + ak−1cΦ1(k)

)
y0y1(

k(k−1)
2 ak−1b2 + ak−1cΦ2(k)

)
+ (k − 1)ak−1by0 + ak−1y0y1

,

y3k =
kakb+ aky0 +

(
k(k−1)

2 ak−1b2 + ak−1cΦ3(k)
)
y0y1

ak + k(k−1)
2 ak−1b2y0 + (kak−1b+ ak−1cΦ1(k)) y0y1

,

y3k+1 =

(
k(k−1)

2 akb2 + akcΦ2(k + 1)
)

+ ka2by0 − aky0y1

kakb+ aky0 +
(
k(k−1)

2 ak−1b2 + ak−1cΦ3(k)
)
y0y1

,

hold, where

Φ1(k) = F2 + F5 + · · ·+ F3k−1,
Φ2(k) = F4 + F7 + · · ·+ F3k−2,
Φ3(k) = F3 + F6 + · · ·+ F3k,
Fj = j + pµ1F1(j), F1(n) ∈ Z[n], µ1 ≥ 1.
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Lemma 3 (see, [6], Lemma 2). Let h1, h2, k, ` be positive integers and let
νp(h1 +h2) = α, νp(h1k+h2`) = β, δ = min (α, β). Then for every j = 2, 3, . . .
we have

νp(h1k
j−1 + h2`

j−1) ≥ δ.

Moreover, for every polynomial G(u) = A1u+A2u
2 + ptG1(u) ∈ Z[u] we have

h1G(k) + h2G(`) = A1(h1k + h2`) +A2(h1k
2 + h2`

2) + pt+sG2(k, `),

where s ≥ min (νp(h1 + h2), νp(h1k + h2`)), h1, h2, k, ` ∈ Z, G2(u, v) ∈ Z[u, v].

Lemma 4 (see, [6], Lemma 3). Let p > 2 be a prime number, m ≥ 2 be a
positive integer, m0 =

[
m
2

]
, f(x), g(x), h(x) be polynomials over Z

f(x) = A1x+A2x
2 + · · · ,

g(x) = B1x+B2x
2 + · · · ,

h(x) = C`x+ C`+1x
`+1 + · · · , ` ≥ 1,

νp(Aj) = λj , νp(Bj) = µj , νp(Cj) = νj ,

and moreover,

k = λ2 < λ3 ≤ · · · , 0 = µ1 < µ2 < µ3 ≤ · · · ,
νp(C`) = 0, νp(Cj) > 0, j ≥ `+ 1.

Then the following bounds occur∣∣∣∣∣ ∑
x∈Zpm

em(f(x))

∣∣∣∣∣ ≤
{

2p
m+k

2 if νp(A1) ≥ k,
0 if νp(A1) < k;

∣∣∣∣∣ ∑
x∈Z∗

pm

em(f(x) + g(x−1))

∣∣∣∣∣ ≤ I(pm−m0)p
m
2

∣∣∣∣∣ ∑
x∈Z∗

pm

em(h(x))

∣∣∣∣∣ ≤
{

1 if ` = 1,

0 if ` > 1,

where I(pm−m0) is a number of solutions of the congruence

y · f ′(y) ≡ g′(y−1) · y−1 (mod pm−m0), y ∈ Z∗pm−m0 .
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3. Main results

For the sequence type (I) by Lemma 1 we have

Lemma 5. Let {yn} be the sequence produced by recursion (I) under its con-
ditions. Then for k ≥ 2 there are valid the following representations modulo pν

y2k = y0
(
1− a−1y20

)
+ k

(
b
(
1− a−1y20

)
+ (2a)−1b2y0 + cy0

)
+

+ k2
(
−a−1y0

(
1− a−1y20

)
b2 + a−1cy20

)
:= E0 + E1k + E2k

2;

y2k+1 =
(
ay−10 + b+ cy0

)
+ k

(
b
(
1− ay−20

)
+ b2 + 2cy0

)
+

+ k2
(
−
(
1− ay−20

)
b2 − 1

2
(4− a−1)b2y−10 − ac

)
:= F0 + F1k + F2k

2;

From here the following assertion follows immediately:

Corollary. The period length τ of the sequence {yn} is equal to 2pm−ν0 if a is
a quadratic non-residue modulo p. And hence, the maximal period length takes
out for νp(b) = ν0 = 1.

For the sequence type (II) by Lemma 2 we have

Lemma 6. Let {yn} be the sequence produced by recursion (II) under its con-
ditions. Then for k ≥ 2 the following representations modulo pν

y3k−1 = ay−10 y−11 + (k − 1)b

(
(−ay−20 y−11 + 1)− 1

2
by−11

(
ay−20 y−11 − 1

))
+

+ (k − 1)2b2
1

2
y−10

(
−1 + a−1y0y

2
1

)
,

y3k =
(
y0 + a−1by20y1 + b2y30y

2
1 + a−1b2y0y1

)
+

+ k

(
b+ a−1b2y0y1 −

1

2
a−1b2y20−

−a−1by20y1 − 2b2y30y
2
1 −

1

2
a−1b2y0y1

)
+

+ k2
(
−a−1b2y0y1 −

1

2
a−1b2y20 + b2y30y

2
1 +

1

2
a−1b2y0y1

)
,

y3k+1 =
(
y1 − a−1b2y21

)
+ kb

(
1

2
b
(
y−10 − a−1y21

)
+ 1− y−10 y1

)
+

+ k2b2
1

2

(
−y−10 + a−1b2y21

)
hold.
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Corollary. If at least one of the congruences

a ≡ y20y1 (mod pν0), a ≡ y0y21 (mod pν0)

is violated then the sequence (II) has a period length τ equal to 3pm−ν0 . If a
is a cubic non-residue modulo p and y = y0 (mod pν) we have the same period
length. And hence, the maximal period length takes out for νp(b) = ν0 = 1.

Now, from representations {yn} obtained above for the sequences (I) and
(II) we infer (by Lemma 4)

Theorem 1. Let {yn} be the sequence of PRN’s produced by recursion (`),
` = I, II, where a is a quadratic non-residue modulo p. Then

S
(j)
` (h;N) =

N−1∑
n=0
yn∈(`)

e2πi
hy
j
n

pm � p
m+ν0

2 , j ∈ Z, (j, p) = 1, (h, p) = 1

hold.

Theorem 2. Let h1, h2 be arbitrary integers with s = νp(gcd(h1, h2, p
m)),

s ≤ m− ν0. Then for the sequence {yn} produced by recursion (`), ` = I, II
and with a maximal period length τ = 3pm−ν0 we have

K`(h1, h2;N) =

N−1∑
n=0
yn∈(`)

e2πi
h1yn+h2y

−1
n

pm � p
m+ν0+s

2 .

To prove the estimates for above sums it is enough to split the summation
over n for two parts n ≡ 0 (mod 2) and n ≡ 1 (mod 2) for ` = I and, respec-
tively, for three parts n ≡ −1 (mod 3), n ≡ 0 (mod 3) and n ≡ 1 (mod 3) for
` = II, and then apply Lemma 4.

Finally note that the more complicated sums over the sequences of PRN’s
of type (I) and (II) may be investigated.
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