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Abstract. Spherical monomials are the building blocks of spherical spec-
tral synthesis. In this work we exhibit the basic ideas how to describe
spherical monomials on some types of affine groups using invariant differ-
ential operators. In particular, we show that if the algebra of invariant
differential operators is generated by a single operator then the classes of
spherical monomials and of spherical moment functions coincide.

1. Introduction

Let V be finite dimensional vector space over K = R or C. Suppose that K
is a subgroup of the general linear group GL(Kn) which we realize as a matrix
group with respect to the standard basis of Kn. We define G as the affine group
of K over Kn, or simply the affine group of K as the semidirect product of K
and Kn:

G = AffK = K �Kn.

Recall that G as a set is identified with K × Kn, and the group operation
is given as

(k, u) · (l, v) = (k ◦ l, kv + u)
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for each k, l in K and u, v in Kn, where k ◦ l is the composition in K and kv
is the image of the vector u under the linear map k. Equipped G with the
ordinary Euclidean topology it is a locally compact topological group, in fact,
it is a Lie group. The identity of G is (id, 0) where id is the identity map in K,
and the inverse of (k, u) is (k−1,−k−1u). Typical examples for affine groups
are the following:

i) Let K = {id}, the trivial subgroup of GL(Kn. In this case AffK identifies
with {id} ×Kn = Kn itself, the group of all translations on Kn.

ii) Let K = R and K = O(n), the orthogonal group, then

Aff O(n) = O(n)�Rn

is the group of Euclidean motions. The affine group of O(n) acts on Rn in
the natural way: for (k, u) in Aff O(n) and x in Rn we let

(k, u) · x = kx+ u,

which represents the affine map which is composition of a rotation cor-
responding to k, and a translation corresponding to u. The ”product”
of (k, u) and (l, v) corresponds to the composition of the respective affine
mappings.

iii) Replacing O(n) by SO(n), the special orthogonal group in the previous
example, we obtain the affine group

Aff SO(n) = SO(n)�Rn,

the group of proper Euclidean motions.

iv) Let K = C and K = U(n), the unitary group, then

Aff U(n) = U(n)�Cn

is the group of unitary motions. The action of U(n) on Cn is similar to
that of O(n) over Rn. Also, we can replace U(n) by SU(n), the special
unitary group to obtain the affine group

Aff SU(n) = SU(n)�Cn

of proper unitary motions in Cn.

v) Let K = R and let K = O(1, 3) denote the Lorentz group on the Minkowski
spacetime R1,3 = R ⊕ R3, that is the group of linear maps on R4 which
leave the indefinite scalar product

〈x, y〉 = x0y0 −
3∑

j=1

xjyj
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invariant. Here x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3) are in R4. The
corresponding affine group is

Aff O(1, 3) = O(1, 3)�R1,3

is the Poincaré group.

The affine group G = AffK has a closed subgroup {(k, 0) : k ∈ K} which is
topologically isomorphic to K, therefore we shall identify it with K. Also, the
closed commutative subgroup {(id, u) : u ∈ Kn} is topologically isomorphic
to Kn, therefore we shall identify it with Kn. In fact, the additive group of
Kn is embedded as a closed normal subgroup into AffK, and the factor group
AffK/Kn is topologically isomorphic to K.

2. Invariant functions and measures

Given the affine group G = AffK we call the function f : G → C K-
invariant if f is invariant with respect to left and right multiplications with
elements of K: more exactly, we have for each k, l′, l′′ in K and u in Kn

f
(
(l′, 0) · (k, u) · (l′′, 0)

)
= f(k, u).

We have the following simple statement:

Proposition 2.1. The function f : G → C is K-invariant if and only if

f(k, u) = f(id, lu)

holds for each k, l in K and u in Kn.

Proof. If f satisfies the above condition, then we have

f
(
(l′, 0) · (k, u) · (l′′, 0)

)
= f(l′ ◦ k ◦ l′′, l′u) = f(id, lu)

for each k, l, l′, l′′ in K and u in Kn. Also, f(k, u) = f(id, lu) for each k, l in K
and u in Kn, hence f is K-invariant.

Conversely, if f is K-invariant, then given k, l in K and u in Kn we choose
l′ = l and l′′ = k−1l−1, then we get

f(k, u) = f
(
(l′, 0) · (k, u) · (l′′, 0)

)
= f(id, lu)

and the statement is proved.



212 L. Székelyhidi

By this statement, K-invariant functions on the affine group AffK can be
identified with those functions on Kn which are invariant under the action of
K on Kn:

f(k, u) = ϕ(u), with ϕ(lu) = ϕ(u)

for each k, l in K and u in Kn, where ϕ : Kn → C is a function. In fact,
ϕ(u) = f(id, u) holds for each u in Kn.

We use the standard notation C(X) for the set of all continuous complex val-
ued functions on the locally compact Hausdorff topological space X. Equipped
with the topology of uniform convergence on compact sets and with the point-
wise linear operations C(X) is a locally convex topological vector space. The
dual of this space can be identified with the space Mc(X) of all compactly
supported complex Borel measures on X. The pairing between Mc(X) and
C(X) is given by

〈µ, f〉 =
∫

f dµ.

Given the affine group G as above the space of all continuous K-invariant
functions is identified with the closed subspace CK(Kn) of all K-invariant con-
tinuous functions on Kn. The dual of this subspace is identified with a weak*-
closed subspace MK(Kn) of Mc(Kn) whose elements µ are characterized by
the property that µ ∗ f is K-invariant whenever f is K-invariant. In other
words, CK(Kn) is a topological module over the ring MK(Kn), where the ring
operation in MK(Kn) is the convolution of measures:

(µ ∗ ν)(f) =
∫ ∫

f(x+ y) dµ(x) dν(y)

for each f in CK(Kn).

3. Projections

Now we suppose that K is a compact subgroup of GL(Kn) and ω is the
normalized Haar measure on K. We introduce the map f �→ f# from C(G) to
C(G) defined by

f#(k, u) =

∫

K

∫

K

f(l′kl′′, l′u) dω(l′) dω(l′′)

for each k in K and u in Kn. Clearly, the right hand side is independent of k,
by the left and right invariance of the Haar measure ω. Hence we can write

f#(k, u) =

∫

K

∫

K

f(l′′, l′u) dω(l′) dω(l′′) = f#(id, u)
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for each k in K and u in Kn. On the other hand, we have for each l in K:

f#(k, lu) =

∫

K

∫

K

f(l′′, l′lu) dω(l′) dω(l′′) = f#(k, u) = f#(id, lu),

hence f# is K-invariant. Consequently, f �→ f# is a continuous linear mapping
from C(G) to CK(G). This mapping is also surjective, as it is the identity on
CK(G). In fact, the continuous function f on G is K-invariant if and only if
f = f#. The mapping f �→ f# is called K-projection.

The projection of the measure µ in Mc(G) is defined by the equation

〈µ#, f〉 = 〈µ, f#〉

whenever f is in C(G). Then µ# is aK-invariant measure, and the map µ �→ µ#

is a weak*-continuous linear map from Mc(G) onto MK(Kn). In particular,
µ in Mc(G) is K-invariant if and only if µ = µ#.

Let for each δ(k,u) denote the point mass at (k, u) – then δ(id,0) is the identity

in Mc(G). Its projection δ#(id,0) is the measure on C(G) given by

〈δ#(id,0), f〉 = 〈δ(id,0), f#〉 =
∫

Kn

∫

K

∫

K

f(l′′, l′u) dω(l′) dω(l′′) dδ(id,0)(k, u) =

=

∫

K

f(l, 0) dω(l),

which is the average of the function l �→ f(l, 0) over K. The projection of δ(l,v)
is

〈δ#(l,v), f〉 = 〈δ(l,v), f#〉 =
∫

Kn

∫

K

∫

K

f(l′′, l′u) dω(l′) dω(l′′) dδ(l,v)(k, u) =

=

∫

K

∫

K

f(l′′, l′v) dω(l′) dω(l′′).

If f is K-invariant, then we have 〈δ#(l,v), f〉 = f(v) = 〈δv, f〉, where δv is the

point mass on Kn with support at v. In fact, δ#(l,v) is independent of l, hence

we can simply write δ#v , instead.

As convolution in MK(Kn) reduces to ordinary convolution of measures on
Kn, MK(Kn) is a commutative algebra, and (G,K) is a Gelfand pair.
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4. Spherical functions

We introduce K-translation operators on the space CK(Kn): let for each y
in Kn and f in CK(Kn)

τyf(x) = δ#y ∗ f(x) =
∫

K

f(x+ ky) dω(k).

As the algebra MK(Kn) is commutative, all K-translation operators form a
commutative family of linear operators. Common normalized eigenfunctions of
all K-translations are called K-spherical functions. The following proposition
is easy to prove.

Proposition 4.1. The continuous K-invariant function f : Kn → C is a
K-spherical function if and only if f(0) = 1, and

∫

K

f(x+ ky) dω(k) = f(x)f(y)

holds for each x, y in Kn.

Proof. If f satisfies the given conditions, then it is clearly a K-spherical
function.

Conversely, suppose that f is a common normalized eigenfunction of all
K-translation operators, then there exists a function λ : Kn → C such that

∫

K

f(x+ ky) dω(k) = λ(y)f(x)

holds for each x, y in Kn. As f(0) = 1 we have

∫

K

f(ky) dω(k) = λ(y),

and, by the K-invariance of f , the left hand side is f(y). �

The following theorem characterizes K-spherical functions on affine groups.
Recall that linear operators of the form f �→ µ ∗ f with f in CK(Kn) and µ in
MK(Kn) are called convolution operators.

Theorem 4.2. Given the affine group G = K�Kn with K compact K-spherical
functions are exactly the common normalized eigenfunctions of all convolution
operators in CK(Kn).



Spherical monomials on affine groups 215

Proof. As all K-translations are convolution operators, the first part of the
statement is obvious: every common normalized eigenfunction of all convolu-
tion operators is a K-spherical function.

For the converse we recall that linear combinations of point masses form a
weak*-dense subset in Mc(G), which implies that the linear combinations of
their projections form a weak*-dense subset in MK(Kn). �

As a simple example we consider the case K = {id} which leads to the
group of translations G = Kn. In this case every function is K-invariant on Kn

and the equation characterizing K-spherical functions reduces to

f(x+ y) = f(x)f(y)

with f(0) = 1. Clearly, the continuous solutions are exactly the exponential
functions f(x) = expλ ·x with λ in Cn, where λ ·x is the inner product in Kn.

The example is the case of the group G of Euclidean motions: G = Aff O(n).

Theorem 4.3. The continuous function f : Rn → C is an O(n)-spherical
function if and only if f(0) = 1, f is C∞, and f is an eigenfunction of the
Laplacian in Rn.

The proof can be found in [1]. As O(n)-invariant functions are radial, that
is, depend on the norm only, the continuous function f : Rn → C is an O(n)-
spherical function if and only if it has the form

f(x) = ϕ(‖x‖)

for x in Rn, where ϕ : R → C is a regular solution of

d2ϕ

dr2
(r) +

n− 1

r

dϕ

dr
(r) = λϕ(r)

for some complex number λ with ϕ(0) = 1. In fact, there is a unique solution for
every complex number λ. If the unique O(n)-spherical function corresponding
to λ is denoted by sλ then sλ is the following:

sλ(x) = Jλ,n(‖x‖) = Γ
(n
2

) ∞∑
k=0

λk

k!Γ
(
k + n

2

)
(‖x‖

2

)k

for x in Rn (see [1]). Here Jλ is the Bessel function with parameters λ, n.

As SO(n) acts on the spheres in Rn transitively (see [2]), it follows that the
space of SO(n)-invariant functions coincides with the set of radial functions.
Hence SO(n)-spherical functions are the same as the O(n)-spherical functions
on Rn.
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In our fourth example above we consider the affine groups of the unitary
motions and of the proper unitary motions. In [3], SU(n)-spherical functions
have been described. We note that a similar description is possible for U(n)-
spherical functions.

In all these examples K is a compact subgroup of GL(Kn) and clearly,
compactness of K plays a basic role in the definition of K-spherical functions.
In the last example we have K = O(1, 3), the Lorentz group, and its affine
group, the Poincaré group over the Minkowski spacetime. In this case K is
non-compact. Still, the subgroup SO(1, 3) of orientation preserving operators
in O(1, 3) do not form a compact group. In fact, its maximal compact subgroup
is S(O(1)×O(3)).

On the other hand, the identity component of O(1, 3) identifies with
SO+(1, 3), which refers to preserving orientation in the first (temporal) dimen-
sion. It is still not compact, but its maximal compact subgroup is
K = SO(1) × SO(3) which identifies with SO(3). The corresponding affine
group is

G = Aff [SO(1)× SO(3)] = [SO(1)× SO(3)]�R1,3 = SO(3)�R1,3,

where (k, t, v) in Aff SO(3) acts on R⊕ R3 for (t, v) and (u, x) in R1,3 as

(k, t, v) · (s, x) = (t+ u, kx+ v).

K-invariant functions on G are those independent of the first variable and
SO(3)-invariant in the second in the sense:

f(k, t, x) = f(id, t, lx)

for each k, l in SO(3), t in R and x in R3. Hence the space of K-invariant
functions is identified with the set of those continuous functions f on R ⊕ R3

satisfying f(t, kx) = f(t, x) for each t in R, x in R3 and k in SO(3). The
functional equation of K-spherical functions is:

∫

SO(3)

s(t+ u, x+ ky) dω(k) = s(t, x)s(u, y), s(0, 0) = 1.

Putting t = 0, y = 0 we have

s(u, x) = s(0, x)s(u, 0).

On the other hand, putting x = y = 0 it follows

s(t+ u, 0) = s(t, 0)s(u, 0),
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hence s(t, 0) = eλt with λ in C. Finally, putting t = u = 0 we have
∫

SO(3)

s(0, x+ ky) dω(k) = s(0, x)s(0, y), s(0, 0) = 1,

hence
s(0, x) = Jξ,3(‖x‖),

where ξ is in C and Jξ is the Bessel function with parameters ξ, 3. The explicit
form is

Jξ,3(r) = Γ
(3
2

) ∞∑
k=0

ξk

k! Γ
(
k + 3

2

)
(r
2

)2k

,

which reduces to

Jξ,3(r) =
sinh ξr

ξr
.

Finally, we have for the K-spherical functions s:

s(t, x) = sλ,ξ(t, x) =
sinh ξ‖x‖
ξ‖x‖

· eλt

with λ, ξ in C.

5. Spherical monomials and moment functions

For each K-spherical function s and y in Kn we define the modified K-
difference as the measure:

∆s;y = δ#−y − s(y)δ0.

For the higher order modified K-differences we use the following notation:

∆s;y1,y2,...,yj+1
= Πj+1

i=1∆s;yi

whenever j is a natural number and y1, y2, . . . , yj+1 are in Kn. In particular,
if y = y1 = y2 = · · · = yj+1, then we write

∆n+1
s;y = ∆s;y1,y2,...,yj+1 .

The explicit form of ∆s;y1,y2,...,yj+1
∗ f(x) can be given as

j+1∑
i=0

∑
1≤j1<j2<···<jl≤j+1

(−1)j1+j2+···+jls(yj1)s(yj2) · · · s(yjl)·

·
∫

K

· · ·
∫

K

f(x+ ε1k1 · y1 + · · ·+ εj+1kj+1 · yj+1) dω(k1) . . . dω(kj+1),
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where in each summand εi is 0 or 1 depending on if i is in the set {j1, j2, . . . , jl}
or it is not. For instance, for any y, z in Kn we have

∆s;y,z ∗ f(x) =
∫

K

∫

K

f(x+ k · y + l · z) dω(k) dω(l)−

− s(y)

∫

K

f(x+ l · z) dω(l)− s(z)

∫

K

f(x+ k · y) dω(k) + s(y)s(z)f(x).

If s ≡ 1, then we write ∆y for ∆1;y, and ∆y1,y2,...,yj+1
for ∆1;y1,y2,...,yj+1

.

We call the continuous K-invariant function f a K-spherical monomial, if it
generates a finite dimensional submodule, and if there is a K-spherical function
s and a natural number d such that

∆s;y1,y2,...,yd+1
∗ f = 0

holds for each y1, y2, . . . , yd+1 in Kn. It can be shown that if f �= 0, then s
is uniquely determined by f . Then we call f an s-monomial and the smallest
d which satisfies the above equation is called its degree. The 1-monomials are
called K-polynomials. The K-polynomials of degree 0 are the constants, and
the K-polynomials of degree 1 have the form A + c, where c is a complex
number, and A satisfies

∫

K

A(x+ ky) dω(k) = A(x) +A(y)

for each x, y in Kn. For obvious reasons such functions are called K-additive
functions.

A special and important subclass of spherical monomials is formed by the
spherical moment functions. Let N be a positive integer. The sequence
f0, f1, . . . , fN of continuous K-invariant functions is called a generalized K-
spherical moment sequence, or shortly K-moment sequence, if

(5.1)

∫

K

fj(x+ ky) dω(k) =

j∑
l=0

(
j

l

)
fl(x)fj−l(y)

holds for j = 0, 1, . . . , N and for all x, y in Rn and f0 �= 0. We call the func-
tions in a generalized K-spherical moment sequence generalized K-spherical
moment functions, or shortly K-moment functions, and fj is called of j-th or-
der. Clearly, f0 is a K-spherical function, hence the elements of the K-moment
function sequence starting with f0 = s are called s-moment functions. By def-
inition, K-moment functions generate finite dimensional submodules. Now we
show that K-moment functions are K-monomials (see also [3, Theorem 3]).
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Theorem 5.1. If f is a K-moment function, then f is a K-monomial. In
particular, if the order of f is at most j, then the degree of f is at most j.

Proof. We prove the statement by induction, and it is clearly true for j = 0.
Let f0 = s and suppose we have proved the statement for j and now we prove
it for j + 1. Let y1, y2, . . . , yj+2 be arbitrary in Rn, then we have for each x in
Rn:

∆s;y1,y2,...,yj+2 ∗ fj+1(x) = ∆s;y1,y2,...,yj+1 ∗ [∆s;yj+2 ∗ f ](x) =

∆s;y1,y2,...,yj+1 ∗
[∫

K

fj+1(x+ ky) dω(k)− s(yj+2)f(x)
]
=

∆s;y1,y2,...,yj+1
∗
[ j∑
l=0

(
j + 1

l

)
fl(x)fj+1−l(yj+2)

]
=

j∑
l=0

(
j + 1

l

)
∆s;y1,y2,...,yj+1

∗ fl(x) · fj+1−l(yj+2) = 0,

by assumption. Our statement is proved. �

6. Invariant differential operators

In the previous example of O(n)-spherical functions we observed that those
are exactly the common normalized eigenfunctions of the Laplacian on Rn. This
property is related to the concept of invariant differential operators. Let E(Rn)
denote the Schwartz’s space of C∞ functions on Rn with the usual topology:
the net (fj) converges to f in E(Rn) if the net

(
P (∂)fi

)
is uniformly converges

to P (∂)f on every compact set for every differential operator P (∂), where P is
a complex polynomial of the form

P (ξ) =
∑
α

cαξ
α, ξ = (ξ1, ξ2, . . . , ξn).

We call a continuous linear mappingD : E(Rn) → E(Rn) a differential operator,
if it is support-decreasing: for each f in E(Rn) we have

suppDf ⊆ supp f.

The differential operator D is said to be K-invariant, if

D(f ◦ k) = Df ◦ k
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holds for each f in E(Rn) and k in K (see [4]). All K-invariant differential
operators form commutative unital algebra, as it is easy to see.

Let C[z1, z2, . . . , zk] denote the ring of complex polynomials in k variables.
Then we have the following result (see [4]):

Theorem 6.1. Let K = O(n) or SO(n). The K-spherical functions are ex-
actly the those normalized C∞-functions f on Rn for which there exists a ring-
homomorphism λ : C[z] → C such that for each P in C[z] we have

P (∆)f = λ(P )f.

Proof. By the previous results we have that the C∞-functions f on Rn is a
K-spherical function if and only if there exists a function λ : C[z] → C such
that for each P in C[z] we have

P (∆)f = λ(P )f.

It is enough to show that λ is a ring-homomorphism. We have for P,Q in C[z]
and for an arbitrary O(n)-spherical function f :

λ(P ·Q)f = (P ·Q)(∆)f = [P (∆) ◦Q(∆)]f = P (∆)
(
Q(∆)f

)
=

P (∆)
(
λ(Q)f

)
= λ(Q)P (∆)f = λ(Q)λ(P )f,

which implies the statement after evaluating both sides at x = 0. �

It is known that on the polynomial ring C[z] every complex ring homomor-
phism is the evaluation functional at some point. In fact, if f is the spherical
function sλ0

corresponding to the eigenvalue λ0, then we have λ(P ) = P (λ0)
for each polynomial P .

A fundamental result about spherical functions is the following (see [4]):

Theorem 6.2. The K-spherical functions are exactly the common normalized
C∞-eigenfunctions of all K-invariant differential operators.

In other words, K-spherical functions are the solutions of a system of par-
tial differential equations which is determined by the algebra of K-invariant
differential operators. Now we prove a similar result for spherical monomials.
Let DK denote the algebra of K-invariant differential operators and I denotes
the identity operator..

Theorem 6.3. Let f : Rn → C be a K-monomial of degree at most N . The f
is C∞ and there is a complex ring homomorphism λ : DK → C such that

(D − λDI)n+1f = 0

holds for each K-invariant differential operator D.
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Proof. In [3], we proved that every K-monomial is infinitely differentiable.
Suppose that f is an s-monomial of degree at most N with the K-spherical
function s : Rn → C. Then there is a complex ring homomorphism λ : DK → C
such that

(D − λDI)s = 0.

First we show that

(6.1) [(D − λDI)y(∆s;y ∗ f)](x) = [(D − λDI)f ](x)

holds for y = 0 and for each x in Rn, where (D− λDI)y denote the differential
operator acting on functions depending on y. Indeed, this is a K-invariant
differential operator, further we can differentiate under the integral to get

(D−λDI)y
[∫

K

f(x+ky) dω(k)−s(y)f(x)
]
=

∫

K

(D−λDI)y[f(x+ky)] dω(k) =

∫

K

[(D − λDI)f ](x+ ky)] dω(k),

and substituting y = 0 we get the statement.

By assumption, we have

∆s;y1
∗∆s;y2

∗ · · · ∗∆s;yN+1
∗ f(x) = 0

for each x, y1, . . . , yN+1 in Rn. If we apply (6.1) with y = yj j = 1, 2, . . . , N + 1
repeatedly, then we get the statement. �

In some cases we can prove the converse statement, too. First we prove the
following lemma.

Lemma 6.1. Suppose that the algebra DK is generated by a single operator D,
i.e. it is isomorphic to the polynomial ring C[z]. Let j ≤ N be natural numbers,
λ a complex number and denote sλ the unique K-spherical function correspond-

ing to the eigenvalue λ of D. Then the functions s
(l)
λ for l = 0, 1, 2, . . . , j form

a K-moment sequence.

Proof. We know that sλ satisfies

(D − λI)sλ = 0, or Dsλ = λsλ.

It follows that λ �→ sλ(x) is a C∞ function for each x in Rn. For each complex
λ and for every x, y in Rn we have

∫

K

sλ(x+ ky) dω(k) = sλ(x)sλ(y).
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Differentiating both sides j times with respect λ for j = 1, 2, . . . , N we get

∫

K

s
(j)
λ (x+ ky) dω(k) =

j∑
l=0

(
j

l

)
s
(l)
λ (x)s

(j−l)
λ (y),

which proves that the functions s
(l)
λ for l = 0, 1, 2, . . . , j form a K-moment

sequence. �

Theorem 6.4. Suppose that the algebra DK is generated by a single operator
D, i.e. it is isomorphic to the polynomial ring C[z]. Let N be a natural number
and λ a complex number. Then every C∞ K-invariant solution f : Rn → C of
the partial differential equation

(D − λI)N+1f = 0

is a K-monomial of degree at most N .

Proof. By differentiating the given equation l times with respect to λ we
have

(D − λI)
dlsλ
dλl

= l
dl−1sλ
dλl−1

.

For the sake of simplicity, we denote dlsλ
dλl by s

(l)
λ . Hence we have

(D − λI)s
(l)
λ = ls

(l−1)
λ

for l = 1, 2, . . . .

Now suppose that f : Rn → C is a K-invariant C∞ function satisfying

(D − λI)N+1f = 0.

We prove by induction on N that f is a linear combination of the functions s
(l)
λ

with l = 0, 1, . . . , N . This is clearly true for N = 0, by Theorem 6.2. Suppose
that the statement holds for l = 0, 1, . . . , N − 1, and we prove it for N ≥ 1. By
assumption, we have

(D − λI)f =

N−1∑
j=0

cjs
(j)
λ .

We let

ϕ =
N−1∑
j=0

cj
1

j + 1
s
(j)
λ ,

then

(D − λI)ϕ =
N−1∑
j=0

cj
1

j + 1
(D − λI)s

(j+1)
λ
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=

N−1∑
j=0

cj(D − λI)
1

j + 1
s
(j+1)
λ =

N−1∑
j=0

cjs
(j)
λ ,

hence
(D − λI)(f − ϕ) = 0.

It follows that f − ϕ = dsλ, where d = f(0)− ϕ(0). Finally, we have

f = dsλ +
N−1∑
j=0

cj
1

j + 1
s
(j)
λ ,

as it was to be proved. �

We can summarize our results about spherical monomials and spherical
moment functions as follows.

Corollary 6.1. Suppose that the algebra DK is generated by a single operator
D, i.e. it is isomorphic to the polynomial ring C[z]. For each natural number
N and complex number λ let sλ denote the unique K-spherical function corre-
sponding the eigenvalue λ of D. Then the set of all sλ-monomials of degree at
most N and the the set of all sλ-moment functions of order at most N coincides

with the linear span of the functions dlsλ
dλl with l = 0, 1, . . . , l.
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