
Annales Univ. Sci. Budapest., Sect. Comp. 48 (2018) 199–208

A CLIQUE SIZE ESTIMATE BASED ON COLORING

THE NODES OF CERTAIN SUBGRAPHS
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Abstract. Many of the maximum clique search algorithms used in practice
employ a routine to establish upper estimate of the clique size of a given
graph. The upper estimates are typically based on legally coloring the
nodes in some greedy manner. Motivated by these facts we propose a upper
estimate for the clique number. Using any greedy coloring procedure the
nodes of many subgraphs are colored legally and then these partial results
are combined together to a clique size upper estimate.

1. Introduction

Let G = (V,E) be a finite simple graph. This means that G has finitely
many nodes and finitely many edges. Further G does not have any loops or
double edges. Here V is the set of nodes of the graph. In this situation the
set of edges E can be identified with a set unordered pairs of the elements of
V . A subgraph ∆ of G is called a clique in G if each two distinct nodes in
∆ are always connected by an edge in G. The number of the nodes of ∆ is
the size of the clique. For each finite simple graph G there is a well defined
number k such that G contains a clique of size k but G does not contain any
clique of size k + 1. This number k is called the clique number of G and it is
denoted by ω(G). The problem of computing the clique number of a graph is
an optimization problem. It is well known that this optimization problem is
NP hard. (See [3].)
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We color the nodes of G such that each node of G receives exactly one color
and two distinct nodes that are connected by an edge never receive the same
color. This type of coloring of the nodes is called legal coloring. For each finite
simple graph G there is well defined number k such that the nodes of G can
be legally colored using k colors but the nodes of G cannot be legally colored
using k − 1 colors. This number k is called the chromatic number of G and
it is denoted by χ(G). The problem of computing χ(G) is an optimization
problem. This optimization problem belongs to the NP hard complexity class.
(See [3].) There is a large variety of greedy algorithms for coloring the nodes of
a given graph legally. (See [2], [4].) These algorithms typically have polynomial
running times but do not provide the optimum number of colors. They only
give an upper bound of the chromatic number. As the inequality ω(G) ≤ χ(G)
obviously holds the greedy coloring procedures can be used to estimate clique
number.

In order to reduce the search space a number of practical clique search
algorithms employ legal node colorings. The role of the coloring is to find an
upper estimate of the clique size. (See [10], [9], [8].) This is the main motivation
of the result of this short note.

The procedure we propose to estimate the clique is fairly flexible. At a
certain point it may incorporate any available clique size estimating algorithm.
Beside legal coloring of the nodes there are less elementary methods to estimate
the clique size of a graph. They typically give better upper bound for the clique
number on the expense of more computations. As an example we mention
the graph parameter θ(G) defined by L. Lovász. It has the property that
ω(G) ≤ θ(G) ≤ χ(G) and θ(G) can be computed in polynomial time by solving
a semi-definite program.

2. Description of the estimating procedure

Let G = (V,E) be a finite simple graph. We divide the set V into two
disjoint subsets U and W . There is a large number of ways one can choose
U and V . The choice of these subsets influences the clique size estimate. We
postpone the issue of assessing the advantages of the various choices. At this
moment we simply assume that there is method of picking the subsets U and
W .

Let H be the subgraph of G induced by U and let K be the subgraph of G
induced by W . Using a greedy algorithm we construct a legal coloring of the
nodes of the graphs H and K. Let C1, . . . , Cp be the colors classes of H and
let D1, . . . , Dq be the colors classes of K.
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For each node v of G we define a quantity which will be called the clique
degree of v and will be denoted by cldeg(v). Suppose first that v ∈ U . Let us
consider the subgraph Lv of G induced by N(v) ∩W . Here N(v) is the set of
nodes in G that are adjacent to v. The set N(v)∩W consists of the neighbors
of v restricted to the set W . Using a fixed algorithm we establish an upper
estimate of ω(Lv). This well defined number will be cldeg(v). For the sake of
definiteness we may use a greedy node coloring procedure to establish an upper
bound for ω(Lv). However, as the graph Lv is smaller than the graph G we
may use computationally more expensive procedures to get better estimates.
In addition computing the clique degrees for different nodes can be carried out
independently of each other.

When v ∈ W , then subgraph Lv is induced by N(v)∩U instead of N(v)∩W .

After this phase of the algorithm is completed the clique degree of each
node of G is available. We may turn to constructing the profiles of the graph
H and K. Set

αi = max{cldeg(v) : v ∈ Ci},

for each i, 1 ≤ i ≤ p. We order the numbers α1, . . . , αp into a non-increasing
list α′

1, . . . , α
′
p and we call this list the profile of the graph H. In a similar way

set

βj = max{cldeg(v) : v ∈ Dj},

for each j, 1 ≤ j ≤ q. We order the numbers β1, . . . , βq into a non-increasing
list β′

1, . . . , β
′
q and we call this list the profile of the graph K.

After completing this phase of the procedure the profiles of the graphs
H and K are completed. We consider the ordered pairs (r, s), 0 ≤ r ≤ p,
0 ≤ s ≤ q. We say that the ordered pair (r, s) is not a qualifying pair if at least
one of the following inequalities holds.

(2.1) α′
1 < s, . . . , α′

r < s

(2.2) β′
1 < r, . . . , β′

s < r

In other words the pair (r, s) is qualifying if each of the following inequalities
holds.

(2.3) α′
1 ≥ s, . . . , α′

r ≥ s

(2.4) β′
1 ≥ r, . . . , β′

s ≥ r

Note that in the r = 0 case each of the inequalities in (2.3) holds. Similarly in
the s = 0 case each of the inequalities in (2.4) holds. The number of the pairs
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(r, s) is equal to (p+1)(q+1). An inspection can be used to find the qualifying
pairs. Set t = max{r + s : (r, s) is qualifying}.

The algorithm gives the ω(G) ≤ max{p, q, t} estimate for the clique size of
G. A straight-forward way to compute t is to arrange the (r, s) pairs into the
following list

(p, q), (p− 1, q), (p, q − 1), (p− 2, q), (p− 1, q − 1), (p, q − 2), . . .

and go on this list until we locate the first qualifying pair.

3. Justification of the procedure

We will use the notations of the previous sections and prove the following
result.

Lemma 3.1. Let G = (V,E) be a finite simple graph and assume that G has
at least one node. The quantity t = max{r + s : (r, s) is qualifying} is an
upper bound of ω(G).

Proof. The graph G contains a clique ∆ of size ω(G). Let U ′ be the set of
nodes of ∆ in U and let W ′ be the set of nodes of ∆ in W . Clearly U ′ and W ′

are disjoint sets and |U ′|+ |W ′| = ω(G).

We distinguish the next four cases.

Case 1 : U ′ = ∅, W ′ = ∅.
Case 2 : U ′ = ∅, W ′ �= ∅.
Case 3 : U ′ �= ∅, W ′ = ∅.
Case 4 : U ′ �= ∅, W ′ �= ∅.

In case 1 the clique ∆ does not have any nodes. As ∆ is a maximum clique
in G it follows that G does not have any node. By the assumption of the lemma
this is not possible.

Let us turn to case 2. Since U ′ = ∅ it follows that ∆ is a clique in the
subgraph K of G induced by W . The nodes of K are legally colored using q
colors and so ω(G) ≤ q holds. Note that the ordered pair (0, q) is a qualifying
pair. This gives that q ≤ t. Thus ω(G) ≤ t as required.

Case 3 can be settled in an analogous way. The equation W ′ = ∅ implies
that ∆ is a clique in the subgraph H of G induced by the set of nodes U . The
nodes of H are legally colored using p colors. Therefore ω(G) ≤ p. As the
ordered pair (p, 0) is a qualifying pair we get p ≤ t and so ω(G) ≤ t.
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We are left with case 4. The elements of the set U ′ ∪W ′ are the nodes of
the clique ∆. Consequently the unordered pair {u,w} is an edge of G for each
u ∈ U ′, w ∈ W ′. The subgraph Lu of G induced by N(u) ∩W must contain a
clique of size s. There are r choices for the node u ∈ U ′. These choices show
that the inequalities (2.3) must hold. Similarly, the subgraph Lw of G induced
by N(w)∩U has to contain a clique of size r. There are s choices for the node
w ∈ W ′. This is why the inequalities (2.4) must hold.

We can see that the ordered pair (r, s) is a qualifying pair. The inequality
ω(G) ≤ r + s holds for each qualifying pair (r, s). Thus ω(G) ≤ t as required.

�

4. A toy example

In order to illustrate the estimating procedure we work out an example in
details.

Example 4.1. Consider the graph G = (V,E) given by the adjacency matrix
in Table 1. The graph has 16 nodes and 56 edges. The nodes are denoted by
1, . . . , 16.

We partition the set of nodes of G into two sets. Namely, we set

U = {1, . . . , 8}, W = {9, . . . , 16}.

Clearly U and W are disjoint and their union is equal to V the set of nodes of
G. We define two new graphs. Let H and K be subgraph of G spanned by U
and W , respectively.

Using the simplest greedy sequential coloring algorithm we color the nodes
of H and K. The color classes of H are

C1 = {1, 5, 8}, C2 = {2, 3}, C3 = {4, 6}, C4 = {7}.

The color classes of K are

D1 = {9, 11, 16}, D2 = {10, 12, 14}, D3 = {13, 15}.

Let u ∈ U . We define a clique degree of u with respect to W . We consider
the set N(u) ∩W . This set induces a subgraph Lu in G. We legally color the
nodes of Lu and use the number of colors as an upper estimate of the clique
degree of u.
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1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 × • • • • • • • •
2 • × • • • • • • •
3 • × • • • • • • • •
4 • • × • • • •
5 • • × • • • •
6 • • • × • • • •
7 • • • × • • • •
8 • • • × • • • •
9 • • • • • × • • •

10 • • • × • •
11 • • • × • •
12 • • • • • × • •
13 • • • • • • • • × • •
14 • • • • • × •
15 • • • • • • × •
16 • • • • • • ×

1 2 3 4 7 9 11 13 15
2 1 5 6 8 12 13 15 16
3 1 4 6 7 9 10 12 13 14
4 1 3 5 7 8 13
5 2 4 6 9 12 14
6 2 3 5 9 10 13 15
7 1 3 4 8 11 14 16
8 2 4 7 9 11 12 16
9 1 3 5 6 8 10 13 15

10 3 6 9 13 14
11 1 7 8 12 15
12 2 3 5 8 11 13 15
13 1 2 3 4 6 9 10 12 14 16
14 3 5 7 10 13 16
15 1 2 6 9 11 12 16
16 2 7 8 13 14 15

Table 1. The adjacency matrix and the lists of neighbors of the graph in
Example 4.1.
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Figure 1. A geometric representation of the graph G in Example 4.1.
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We may use any coloring procedure we choose. This means that different
people will find different estimates of the clique degrees of the node u. The
clique number of Lu is uniquely determined but it might be hard to compute.
This is the reason why we are satisfied with a not well defined but efficiently
computable estimate of the clique degree.

Let w ∈ W . We define a clique degree of w with respect to U in a similar
way. The clique degree estimates of the of the nodes of H and K are given in
Table 2.

From each of the color classes C1, C2, C3, C4 we pick a node with a largest
clique degree estimate. We get four number in this way. We then order these
numbers in a non-increasing order. We call the resulting sequence the profile
of K.

Similarly, from each of the color classes D1, D2, D3 we choose a node with
a maximum clique degree estimate. Then we order the three numbers in a
non-increasing order. The sequence we get is the profile of K. The profiles of
H and K are given in Table 2.

node 1 5 8 2 3 4 6 7
clique degree estimate 2 1 2 2 3 1 3 2

node 9 11 16 10 12 14 13 15
clique degree estimate 3 2 2 3 2 2 3 2

profile of H 3 3 2 2
profile of K 3 3 3

Table 2. The nodes with color degrees and the color degree profiles of H and
K in Example 4.1.

Suppose there is a clique ∆ in G such that r nodes of ∆ is in U and s nodes
of ∆ in W . It means that r nodes in U are all adjacent to s nodes in W . We
are working with a complete bipartite graph B of type (r, s).

In Table 3. we test first the r = 4, s = 3 possibility. Note that the clique
degree of each node of B in the set U is at least 3. Similarly, the clique degree
of each node of B in the set W is at least 4. We can compare the required
clique degrees with the available clique degrees. The + signs indicates that
r = 4, s = 3 choice is not possible.

The final conclusion we can read off from Table 3 is that ω(G) ≤ 5.
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r = 4, s = 3
needed 3 3 3 3 4 4 4
found 3 3 2 2 3 3 3

+ + + + +
r = 3, s = 3
needed 3 3 3 3 3 3
found 3 3 2 3 3 3

+
r = 4, s = 2
needed 2 2 2 2 4 4
found 3 3 2 2 3 3

+ +
r = 2, s = 3
needed 3 3 2 2 2
found 3 3 3 3 3

Table 3. Testing the (r, s) pairs in Example 4.1.
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