Annales Univ. Sci. Budapest., Sect. Comp. 48 (2018) 129-136

ON A CHARACTERIZATION OF STARLIKE
FUNCTIONS

Zsolt Pales (Debrecen, Hungary)

Communicated by Antal Jarai

(Received March 25, 2018; accepted June 13, 2018)

Abstract. The aim of this paper is to present several equivalent conditions
for starlikeness of functions. Our results will generalize that of Losonczi
by eliminating the differentiability assumptions. Instead of Fréchet differ-
entiability we only assume directional upper semicontinuity and use the
left hand sided upper and lower Dini derivatives. Thus, we will also obtain
new characterization of convex functions.

1. Introduction

In the paper [4] by L. Losonczi various versions of conditional convexity of
real valued functions were defined in the normed space setting. We recall one
of those notions and call it starlikeness in this paper.

Let X be a real linear space throughout this paper. A subset D C X is said
to be a starlike set with respect to a point w € D if, for x € D,

[v,w]={ e+ (1 —-Nw : Ae[0,1] } C D.

Key words and phrases: Convexity, conditional convexity, starlike set, starlike function.
2010 Mathematics Subject Classification: 26A51, 26B25.

The research of the first author was supported by the Hungarian Scientific Research Fund
(OTKA) Grant K-111651 and by the EFOP-3.6.1-16-2016-00022 project. This project is
co-financed by the European Union and the European Social Fund.



130 7Zs. Péles

A function f: D — R is called starlike with respect to the point w € D if D is
starlike with respect to w and

(1.1) FOz+ (1 =Nw) < Af(z)+ (1 —N)f(w) (x e D, Ae0,1])

holds.

It is obvious, that if D is convex, then f is starlike with respect to all
w € D if and only if it is convex on D. Therefore, starlikeness of functions can
be considered as a particular version of conditional convexity. In [4] Losonczi
obtained the following characterization of starlike functions.

Theorem A. Let X be a real normed space and D C X be an open starlike
set with respect to w € D. Let f : D — R be a Fréchet differentiable function
on D. Then f is starlike with respect to w if and only

(1.2) f@)(w—2) < flw) - f(z)  (ze€D)
is valid, where f'(x) denotes the Fréchet derivative of f at the point x.

If D is convex, then Theorem A yields the known first-order characterization
of convex functions as well (see [8]).

The main aim of this paper is to present several equivalent conditions for
starlikeness of functions. We will also obtain a generalization of Theorem A,
where no differentiability of f will be assumed; we shall use left hand sided
upper and lower Dini derivatives instead of the Fréchet derivative. Thus, we
will also obtain new characterization of convex functions.

2. Results

Let X be a real linear space, D be nonempty subset of X, w € D be fixed,
and f: D — R be an arbitrary function throughout this paper.

In order to formulate the first geometric characterization of starlike func-
tions, we recall the notion of epigraph of functions:

epi(f) :=={ (z,t) e DxR| f(z) <t }.

Our first result establishes a connection between starlikeness of a functions
and starlikeness of its epigraph. Its proof is almost obvious, it is described only
for reader’s convenience.



On a characterization of starlike functions 131

Theorem 1. The set D C X and the function f : D — R is starlike with
respect to w € D if and only if epi(f) is a starlike set with respect the point

(w, f(w)).

Proof. Assume first that D and f are starlike with respect to w. Let
(z,t) € epi(f) and A € [0,1]. Then, due to inequality (1.1), we have

fOz+ (1= Nw) < Af(x) + (1= A f(w) <M+ (1= A)f(w).

Therefore,

Aa,t) + (1= N (w, f(w)) = (Ax (1= Nw, M+ (1 — )\)f(w)) € epi(f).
Thus
[(z,1), (w, f(w))] C epi(f),

and hence, epi(f) is starlike with respect to (w, f(w)).

Assume now that epi(f) is starlike with respect to (w, f(w)). Let € D
and A € [0, 1] be arbitrary. Then, (z, f(z)) being in epi(f), we have that

M@, £(2)) + (1= ), fw)) = (Ar + (1= Nw, Af(2) + (1= ) f(w) ) € epi(f).

Hence,
Az + (1 —XNwe D
and
fOz+ (1= Nw) <Af(z) + (1 - ) f(w).
Thus D and f are starlike with respect to w. ]

The second characterization of starlike functions can also be proved in an
obvious way.

Theorem 2. Let D C X be a starlike set with respect to w. Then f is starlike
with respect to w if and only if, for all fited v € D, the function

floz+ (1 = tw) - f(w)

(2'1) ¢v(t) = L

(t €]0, 1))

1S 1ncreasing.

Proof. Assume that f is starlike with respect to w. Let v € D be fixed and
let 0 < s <t <1. Then, applying (1.1) with z := tv + (1 — t)w and X := s/t,

we get

F((s/t)(tv + (1 = thw) + (1 = s/t)w)) < (/1) f(tv + (1 = hw) + (1 = s/t) f(w),
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that is,
tf(sv+ (1 —s)w) <sf(tv+ (1 —t)w)+ (t —s)f(w).

Thus, ¢,(s) < ¢,(t), and hence ¢, is increasing.

Conversely, if for all v € D, the function ¢, is increasing, then, with v := =z,
we get ¢ () < ¢, (1) for A €]0, 1], which is equivalent to (1.1). [ ]

We note that the monotonicity of the function ¢, defined in (2.1) was also
discovered and used in the proof of Theorem A by Losonczi [4].

Now we are going to formulate our main result that will generalize Theo-
rem A. In order to accomplish this goal, we have to recall the notion of upper
and lower left and right hand sided Dini directional derivative.

Assume that z € D and v € X such that z-+tv € D for small positive values

of t. Then the upper and lower right hand sided Dini directional derivatives of
f at the point x are defined by

d" f(z;v) := limsup w, dy f(z;v) == lim inf w
t—0+ t {0+ t

7

respectively. Similarly, if © 4+ tv € D for small negative values of ¢, the upper
and lower left hand sided Dini directional derivatives are defined by

flattv) = fl@) d_ f(z;v) := liminf flotto) = flz)

t ’ t—0— t ’

d” f(x;v) := limsup
t—0—

respectively.

Theorem 3. Let D C X be a starlike set with respect to an element w € D such
that, for all x € D there exists € > 0 satisfying t+e(x—w) € D. Let f : D - R
be a function such that, for allx € D, the function A — f(Az+(1—N)w) is upper
semicontinuous on ]0,1]. Then the following conditions are pairwise equivalent

(i) f is starlike with respect to w;
(ii) d™ f(z,w —2) < f(w) — f(z) for all x € D;
(iii) d_ f(z,w —x) < f(w) — f(z) for all x € D.

We note that if X is a topological linear space, then the regularity as-
sumptions on D and on f are easily satisfied if D is open and f is upper
semicontinuous on D \ {w}.

Proof. Assume first that f is starlike with respect to w. Let z € D be fixed.
We may also assume that « # w, otherwise (ii) is trivial. Let ¢ > 0 such that
x +¢e(x —w) € D. Then, for —e <t < 0, we have that z; := (1 — t)z + tw =
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@+ t(w—x) € D. Applying (1.1) with z; instead of z and with X := =%, we
get
—t 1
f@) = (710 =D+ tu] + 7—w)
—t 1
< —f((1— — .
< e )+ )

Therefore, for —e < ¢t < 0, we have

fla+tw—1x)) - f(z)
fw) = f(z) = ; :

Taking the limsup ¢ — 0— in the above inequality, we obtain that (ii) is valid.
Clearly, (ii) yields (iii).

In the rest of the proof, we show that (iii) implies (i). Assume, on the
contrary, that (iii) is valid, but (i) does not hold. Then there exist 2o € D\ {w}
and Ao €]0, 1] such that

(2.2) f(Qowo + (1 = Xo)w) > Ao f(wo) + (1 — Ao) f(w).
Define the function g : [0,1] — R by
g(t) == f(tzo + (1 = thw) — tf(xo) — (1 — 1) f(w).

Then, by our regularity assumption on f, the function g is upper semicontin-
uous on ]0, 1], and by (2.2), g(Ag) > 0. Therefore, g attains its maximum on
the compact interval [Ao, 1] at a point g, and ty # 1, because g(1) = 0. Then
we have

(2.3) g(t) < g(to) (to <t <1)
and
(2.4) g(to) > 0.

In view of (2.3), for to <t < 1, we get

0> 9(153f - fo(to) _ fltwo+ (1 - t)w)tijzitoxo + (1~ to)w) + f(w) = f(=o),

that is, with the notation z, := toxo + (1 — to)w,

f(@s + (to — 1) (w — 20)) — f(24)
to—t

> f(w) - f(l'o),
if to < t < 1. Taking the liminf as ¢ — to+ (then ¢ — ty — 0—), we obtain that

(2.5) d—f(ze,w —x0) 2 f(w) — f(x0).
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It follows from the choice of x, that w —xz, = to(w — x(), hence, by the positive
homogeneity of the Dini derivatives, (2.5) yields

(2.6) Ay w = 22) > tolf(w) — f(z0)].
On the other hand, by (2.4),

f(tozo + (1 —to)w) — f(w) > to(f(xzo) — f(w)).

Hence

(2.7) tolf(w) = f(zo)] > flw) — f(xx)

Combining the two inequalities (2.6) and (2.7), we get
d_f(@ew —z2) > to[f(w) = f(z0)] > f(w) = f(x.)

which contradicts (iii). The contradiction obtained shows that (iii) implies (i).
|

Remark 4. We note that the regularity assumption on f was used only in the
proof of the implication (iii)=-(i). It can also be shown that if (i) is valid then
the function f also has the following properties.

(iv) d f(z,w —z) < f(w) — f(z) for all z € D;

f
(v) dyf(x,w—1x) < f(w) — f(x) for all x € D;
However, it is not clear if (iv) or (v) is sufficient for (i) to hold.

Remark 5. The inequality which is reversed to (1.1) can also be character-
ized. Omne has to apply Theorem 3 for the function (—f) instead of f. Then,
using the easy-to-see identities d_ (—f)(x;v) = —d T f(z;v) and d=(—f)(z;v) =
= —d4 f(x;v), we can see that this charaterization is made in terms of the right
hand side Dini derivatives dy f and d* f via reversed inequalities in conditions
(ii) and (iii) of Theorem 3, respectively.

The result obtained in Theorem 3, allows us to present a new characteriza-
tion of convexity.

Corollary 6. Let X be a Hausdorff topological linear space and D be an open
conver subset of X. Assume that f: D — R is upper semicontinuous on [z, y]
if xt,y € D. Then the following conditions are pairwise equivalent:

(i) f is conver;

(i) d” f(z,w—x) < f(w) — f(z) for all z,w € D;
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(iii) d_f(z,w—z) < f(w) — f(z) for all z,w € D.

Applying this corollary to the function (—f), we can also get

Corollary 7. Let X be a Hausdorff topological linear space and D be an open
conver subset of X. Assume that f: D — R is lower semicontinuous on [z,y]
if x,y € D. Then the following conditions are pairwise equivalent:

(i) f is concave;

(1]

(w) — f(x) for all z,w € D;
(w) — f(x) for all z,w € D.
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