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Abstract. In this paper we present some improvements of finding large
values of the Riemann–Siegel function Z(t). In order to analyse Z(t) the
authors developed a function F (t) which shows in some aspect similar
characteristics to Z(t) but easier to compute.

1. Introduction

Many important functions exist in analytical number theory, including the
various zeta functions, such as Epstein zeta, Dirichlet-L, Dedekind zeta, or
the Hurwitz zeta function. One of the most important and most studied zeta
function is the Riemann zeta function. It is defined by the sum of the infinite
series

ζ(s) =
∞∑

n=1

1
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with the complex variable s = σ + it. ζ(s) is convergent if Re(s) > 1. By
analytic continuation the function can be extended to the whole complex plane,
except for a simple pole at s = 1. It satisfies the functional equation

ζ(1− s) = 2(2π)−s cos
(
1
2sπ

)
Γ(s)ζ(s) .

Riemann conjectured that all non-trivial zeros of ζ(s) have real part σ = 1/2
(critical line). This is the famous Riemann hypothesis, one of the most impor-
tant and unsolved problems in number theory. The Riemann zeta function
describes the behaviour of the distribution of the prime numbers.

Many authors computed the zeroes of ζ(s) proving that the Riemann hy-
pothesis holds up to some bound. In 1979 Brent showed [1] that the first
75 million non-trivial zeros lie on the critical line. In 1986 van de Lune et
al. showed [2] that the first 1.5 billion non-trivial zeros also lie on the criti-
cal line. In 1985 the Mertens conjecture [3] was disproved by Odlyzko and te
Riele based on extensive computations of the zeros of the zeta function. Their
method is a striking example of a mathematical proof including a large amount
of computational evidence.

1.1. The Riemann–Siegel Formula

For investigating ζ(s) on the critical line the usual way is to consider the
formula

(1.1) ζ
(
1
2 + it

)
= Z(t)e−iθ(t)

where Z(t) is the Riemann–Siegel function. Clearly, we have |ζ(1/2 + it)| =
= |Z(t)|. Equation (1.1) implies that Z(t) and θ(t) are real for real t and can be
used to investigate the behaviour of ζ(s). Analysing Z(t) reduces the problem
of finding zeros of the zeta function on the critical line. The Riemann–Siegel
function has also a very deep connection to the Riemann hypothesis:

Theorem 1.1. Suppose that there exist a real number t0 with Z(t0) �= 0 such
that Z(t) had either a positive local minimum or a negative local maximum at
t = t0. Then RH is false [4].

Z(t) can be calculated in time complexity of O(t1/2) by the Riemann–Siegel
Formula ([1], [5])

(1.2) Z(t) = 2

�
√

t/2π�∑
n=1

1√
n
cos(θ(t)− t · lnn) +O(t−1/4) ,
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where θ(t) is the the Riemann–Siegel theta function and is defined in terms of
the Gamma function for real values of t by

θ(t) = arg

(
Γ

(
2it+ 1

4

))
− lnπ

2
t ≈ t

2
ln

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+ · · ·

Equation (1.2) was the most used tool for verification of the Riemann hypothe-
sis till 1988, when Odlyzko and Schönhage introduced a more efficient algorithm
for evaluating the Riemann zeta function at multiple points simultaneously. In
2004 the Odlyzko-Schönhage algorithm [6] was used by Gourdon in order to
verify the Riemann hypothesis for the first 1013 zeros of the zeta function [7].

1.2. The importance of large Z(t) values

Based on numerical verification and analysis of the behaviour of ζ(s) it
is conjectured that if a counterexample of RH exist then it should be in the
neighbourhood of unusually large peaks of ζ(1/2 + it) [1].

For the integers m ≥ 0 the mth Gram point gm is defined by the unique
solution of the equation

θ(gm) = mπ .

Gram’s law states that Z(t) “usually” changes sign in the Gram intervals
Gj = [gj , gj+1) for j ≥ 0. A Gram point gj is said to be “good” if (−1)jZ(gj) >
> 0 and “bad” otherwise. A Gram block with length k is an interval Mj =
= [gj , gj+k) such that gj and gj+k are good Gram points and gj+1, . . . gj+k−1

are bad Gram points for k ≥ 1. The interval Mj satisfies Rosser’s rule if Z(t)
has at least k zeroes in Mj . Rosser’s rule is violated infinitely often, but only
for a small fraction of the Gram blocks [13].

In 1979 Brent computed the first 75 000 000 zeros of ζ(s) and observed an
unusually large Z(t) (> 79.6) near the 70354406th Gram point [1]. Experiences
showed that in all the cases, where an exception to Rosser’s rule was observed,
there was a large local peak of Z(t) nearby.

Another reason why calculating peak values of Z(t) is interesting: analysing
them may help to discover and explain new interesting behaviour of the distri-
bution of prime numbers.

At present (2018) one can calculate Z(t) within O(t1/3) time complexity
applying the algorithm of Hiary [8] (published in 2011). Since ζ(1/2 + it) is
unbounded Z(t) can take arbitrarily large values as t goes to infinity, however,
finding peak values of Z(t) is computationally expensive even with modern
computer technology.

In 2013 the authors published an algorithm for solving n-dimensional simul-
taneous Diophantine approximation problems efficiently [9]. Using this method
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and based on previous work of Kotnik [10] and Odlyzko [11] the RS-Peak algo-
rithm [12] was presented in 2014. The RS-Peak algorithm can be used to find
those t values efficiently where large Z(t) are likely.

2. The RS-Peak algorithm

In this section we summarize the RS-Peak algorithm in a nutshell. For
further details see the full specification and description of the algorithm in
[12]. During a 4-year period many new records achieved applying the RS-Peak
algorithm on the SZTAKI Desktop Grid [15] operated by the Laboratory of
Parallel and Distributed Systems in the Institute for Computer Science and
Control of the Hungarian Academy of Sciences. The largest known Z(t) and
other new achievements were published in 2017 [14].

The RS-Peak algorithm has three main parts:

• Part I – Fast Diophantine approximation;

• Part II – Filtering with a special function;

• Part III – Summand filtering.

The second and third part eliminate weak candidates by sieving.

2.1. Part I – Fast Diophantine approximation

The first part is about generating the candidates t where large Z(t) is
likely by solving simultaneous Diophantine approximations. Consider a set of
irrationals Υ = {α1, α2, . . . , αn}, let ε > 0 and let us define the set

(2.1) Λ(Υ, ε) = {k ∈ N : ‖kαi‖ < varepsilon for all αi ∈ Υ}

where ‖ · ‖ denotes the nearest integer distance function. Finding many ap-
propriate k ∈ Λ(Υ, ε) is a simultaneous Diophantine approximation problem.
One of the most efficient algorithms for solving such simultaneous Diophantine
approximation problems is the Lenstra-Lenstra-Lovász (LLL) basis reduction
algorithm [16]. One can use the LLL algorithm in order to find one appropriate
k satisfying (2.1).

In 2013 the authors presented a method for solving n-dimensional simul-
taneous Diophantine approximation problems efficiently [12]. The method is
based on the following theorem:
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Theorem 2.1. Let Υ = {α1, α2, . . . , αn} be a set of irrationals and ε > 0.
Then there is a set Γn with 2n elements with the following property: if k ∈
∈ Λ(Υ, ε) then (k + γ) ∈ Λ(Υ, ε) for some γ ∈ Γn.

The generation of Γn can be done efficiently and can be used to produce
many k ∈ N much faster than with LLL in small dimensions (n ≤ 20), see [12,
17]. Based on this result the authors introduced the Multithreaded Advanced
Fast Rational Approximation algorithm (Mafra) [17] for solving simultaneous
Diophantine approximation problems. Then, the algorithm RS-Peak [12] was
introduced, which is based on the following idea: one has to find an integer
k such that the real numbers k ln pi

ln 2 are all close to some integers for as many

primes pi as possible. In this case at the points t = 2kπ
ln 2 the approximation

cos
(
θ(t)− t lnn

)
≈ cos

(
θ(t)

)

holds. For this particular Diophantine approximation problem LLL is sub-
stituted by Mafra achieving significant improvement in locating appropriate
integers k.

2.2. Part II – Filtering with a special function

Investigating many large values of Z(t) the authors introduced the function

(2.2) F (t) =

� ln (t/2π)�∑
n=1

1√
n
cos(θ(t)− t · lnn)) .

We expect large Z(t) where F (t) is large due to the fact that 1√
n
is dominant

in the beginning of the summand and less relevant for larger n. Until now the
function F (t) was not thoroughly analysed. In the last few years it has turned
out that it is much more powerful.

2.3. Part III – Summand filtering

Part III is the last filtering part of the RS-Peak algorithm. Here the

(2.3) A(t, B1, B2) =

B2∑
n=B1

1√
n
cos(θ(t)− t · lnn)

function was used with appropriate B1 and B2 parameters.

The main focus of this paper is to strengthen the filtering part II of the
RS-Peak algorithm and to analyse the behaviour of F (t) function, which is, in
some sense, very similar to the original Riemann–Siegel function.
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3. Numerical investigation of F (t)

The importance and usefulness of studying F (t) has been already observed
in [12]: “Where peak values of F (t) occur we can expect in a high proportion
of the cases that there are peak values of Z(t) as well. F (t) can be used for
a given t to presume the order of Z(t). Of course, there are cases where the
behaviour of F (t) and Z(t) is different, but in general, the methods can be used
very effectively to eliminate unlikely candidates.”

3.1. Computing F (t)

Calculating Z(t) is a very expensive task with the original Riemann–Siegel
formula, even with the O(t1/3) time complexity algorithm of Hiary. Note that
the complexity of F (t) is only O(ln t), which is significantly better. On a
modern computer architecture F (t) can be calculated in less than a second even
for t ≈ 101000 and can be used to calculate F (t) for large t values. Calculating
F (t) gives us a lot of useful information about the behaviour of Z(t), such as
the expected growth of Z(t) or the magnitude of Z(t).

For testing purposes we used a Supermicro server equipped with 2 Intel
Xeon Processor E5-2650 v4 CPU. Each CPU has 12 physical cores. With
hyperthreading we have 48 threads for testing purposes. For calculating Z(t)
the O(t1/3) time complexity algorithm of Hiary was used1. F (t) is very simple,
so we implemented it in the PARI/GP computer algebra system. Table 1 shows
the difference between the calculation speed of Z(t) and F (t), denoted by ΩZ(t)

and ΩF (t), respectively.

# t Z(t) F (t) ΩZ(t) ΩF (t)

1 69903941711014013853520029.49 3794.501 13.382 5434s < 1ms

2 1322092402124830098554392373.32 −5012.013 −13.841 17478s < 1ms

3 5964500070917012502334744833.72 −4619.42 −14.007 31753s < 1ms

4 7214695626747977979984985146.68 6089.99 14.007 34194s < 1ms

5 31616488911549318255796390329.65 −7135.605 −13.467 60561s < 1ms

6 10100 N/A 0.059 N/A 3ms

7 10340 N/A 1.720 N/A 31ms

8 101000 N/A 0.07 N/A 824ms

Table 1: Computation time of Z(t) and F (t) for some values

One can see that the calculation speed of F (t) is fast enough even for large
values of t. One can compute F (t) for t = 10340 easily, which may show

1The algorithm can be downloaded from Github https://github.com/jwbober/zetacalc
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interesting behaviour of the Riemann–Siegel function. Calculating Z(t) for
t > 1040 is beyond the current computational capacity.

Let us consider the following simple maximum searching algorithm:

Algorithm 1 FindLargest(t,N,∆)

1: tmax, Fmax ← 0
2: while t < t+N do
3: f ← abs(F (t))
4: if f > Fmax then
5: tmax ← t
6: Fmax ← f
7: end if
8: t ← t+∆
9: end while

10: return (tmax, Fmax)

One can observe that the most expensive computations in the main sum-
mand of F (t) are calculating the square root and the natural logarithm func-
tion many times. E.g., for the value t = 69903941711014013853520000 the
FindLargest(t, 1000, 0.1) algorithm calculates 1√

n
and log n every time when

F (t) is called. In our particular case, F (t) is invoked 10 000 times. However, in
our experiments the values of t are 0 ≤ t ≤ 1040, and since � ln (1040/2π)� ≈ 90
one can use a precomputed lookup table for storing the values

√
n and log n,

respectively. Running FindLargest(t, 1000, 0.1) without a precomputed table
took approximately 3.5 seconds in our test environment. Using a precomputed
table the same task took approximately 1.5 seconds. The difference is signifi-
cant. Let us analyse the FindLargest algorithm applying different ∆ stepsizes.
Let the starting point t = 69903941711014013853520000, where we have

# ∆ N tmax Fmax

1 1 50 69903941711014013853520029 11.355

2 0.1 50 69903941711014013853520029.6 13.08

3 0.01 50 69903941711014013853520029.49 13.382

Table 2: The result of the FindLargest algorithm with different stepsizes

The algorithm finds the appropriate tmax values in the interval [t, t + N ],
where the largest Z(t) occur at t = 69903941711014013853520029.49 using
∆ = 0.01 stepsize. Figure 1 and 2 show F (t) in the interval [t, t + 50] with
∆ = 1 and ∆ = 0.1 stepsizes. The difference is striking. One can observe that
F (t) is more dense with ∆ = 0.1 than with ∆ = 1.
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Figure 1: Plotting F (t) with stepsize ∆ = 1

Figure 2: Plotting F (t) with stepsize ∆ = 0.1
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One can observe that the fine behaviour of F (t) can only be seen with the
smaller stepsize ∆ = 0.1. Computational experiments show that in the range
of interest, the stepsize ∆ = 1 is sufficient for finding tmax with small deviation.

3.2. Deviation of F(t) and Z(t)

The previous sections suggest that in many cases F (t) can be used effectively
to indicate where large values of |Z(t)| are likely. We analysed the FindLargest
algorithm for many different t values with different N and ∆ parameters. Let
Zmax = Zmax(t0, N) denote such a value t where |Z(t)| is the largest in the
interval [t0, t0 + N ]. Similarly, let Fmax = Fmax(t0, N) denote such a value t
where |F (t)| is the largest in the interval [t0, t0 +N ]. In order to measure the
strength of the F (t) function we are interested in the deviation of Zmax(t0, N)
and Fmax(t0, N). Let us define the function σ as

σ = σ(t0, N) = 100 ∗ |Z(Zmax(t0, N))− Z(Fmax(t0, N))|
Z(Zmax(t0, N))

Table 3 displays the output of the FindLargest(t,N,∆) algorithm (t values
found by RS-Peak) for different parameters together with σ.

t0 = 356071078353654500

Z(Zmax) N ∆ Zmax Fmax σ

1287.14 100 0.01 t0 + 62.22 t0 + 62.22 0%

t0 = 6578787583549202400

Z(Zmax) N ∆ Zmax Fmax σ

−1368.459 100 0.01 t0 + 0.03 t0 + 0.03 0%

t0 = 1322092402124830098554392000

Z(Zmax) N ∆ Zmax Fmax σ

−5012.013 1000 0.01 t0 + 373.32 t0 + 373.32 0%

t0 = 31616488911549318255796390000

Z(Zmax) N ∆ Zmax Fmax σ

−7135.606 1000 0.01 t0 + 329.65 t0 + 329.66 0.46%

Table 3: Output of the FindLargest(t,N,∆) algorithm for different t values

We also tested our F (t) function on different values published by other au-
thors. Figure 3 shows the neighbourhood of Fmax for large values of t published
by Hiary2. In each case the appropriate Fmax values differ only with σ < 0.5%.

2https://people.math.osu.edu/hiary.1/
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(a) Z(t) ≈ 16244.86, F (t) ≈ 13.67 (b) Z(t) ≈ −14055.89, F (t) ≈ −14.218

(c) Z(t) ≈ −13558.833, F (t) ≈ −14.242 (d) Z(t) ≈ 13338, F (t) ≈ 11.430

(e) Z(t) ≈ 12021.094, F (t) ≈ 14.807 (f) Z(t) ≈ 11196.79, F (t) ≈ 14.074

Figure 3: Output of the FindLargest(t, 100,∆ = 1) algorithm for t values
published by Ghaith A. Hiary and Jonathan W. Bober
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4. Further research

The aim of the Riemann Zeta Search Project is locating peak values of
the ζ(s) function on the critical line in order to have a better understanding
of the distribution of prime numbers. Applying RS-Peak algorithm many large
values of Z(t) have been found in the last 4 years. Thousands of new large
Z(t) values calculated and published on the Riemann Zeta Search Project

website https://www.Riemann-Siegel.com.

The Lindelöf hypothesis is a conjecture about the rate of growth of the
Riemann zeta function on the critical line and says that for any ε > 0

ζ
(
1
2 + it

)
= O(tε).

The calculation of millions of large Z(t) values for 1010 ≤ t ≤ 1037 shows that

as t goes to infinity the ϕ(t) = log |Z(t)|
log(t) gets smaller and smaller. It seems that

these values can be used to numerically support the Lindelöf hypothesis. We
plan to continue our research in this direction.
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