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Abstract. We find the exact constant in the second moment estimate
for strongly additive functions defined on random permutations. The re-
sult draws some distinction comparing to the number-theoretical Turán–
Kubilius inequality when its sharp form is taken into account.

1. Introduction and the result

The purpose of this note is to demonstrate the parallelism and contrast of
probabilistic number theory and probabilistic combinatorics just considering
the second moment for additive functions defined on random permutations.
The starting point is the Turán–Kubilius inequality which, for strongly additive
number-theoretic functions h : N → R, reads as follows
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n

n∑
m=1

(∑
p|m

h(p)−
∑
p≤n

h(p)

p

)2(∑
p≤n

h2(p)

p

)−1

=: Kn(h) ≤ C.

Here p denotes a prime number, h(p) �= 0 for at least one p, n ∈ N \ {1}, and
C > 0 is an absolute constant. Refining his earlier results, in 1985 J. Kubilius
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[3] established that C can be substituted by 3/2+O
(
1/ log n

)
with an absolute

constant in the symbol O(·). The result is sharp. Another approach estimating
the variance giving also the optimal constant was proposed by A. Hildebrand
[2]. An estimate with the O((log n)−1/2) remainder is given in the technical
report [6]. The inequality above with C = 32 holds for all n ∈ N, as it has been
observed by P.D.T.A. Elliott (see Supplement in [1] for an exhaustive historical
account). A result by J. Lee deserves a special mentioning. He proved in [4]
that there exist absolute positive constants c and d such that

(1.1)
3

2
− c

log n
≤ sup

{
Kn(h) : h �= 0

}
≤ 3

2
− d

log n

for all sufficiently large n. Moreover, (1.1) holds for any d ≤ 0, 644.... Having
this in mind, the second author [5] did an attempt to find an asymptotic con-
stant in the second moment estimate for additive functions defined on random
permutations.

Let Sn be the symmetric group of permutations σ acting on n ≥ 1 letters.
Each σ ∈ Sn has a unique representation (up to the order) by the product of
independent cycles κi:

(1.2) σ = κ1 · · ·κw,

where w = w(σ) denotes the number of cycles. Let νn be the uniform proba-
bility measure on Sn (Haar measure). Set �(k̄) = 1k1 + · · · + nkn for a vector
k̄ = (k1, . . . , kn) ∈ Zn

+. Let kj(σ) denote the number of cycles of length j in
(1.2) and k̄(σ) : = (k1(σ), . . . , kn(σ)) be the cycle structure vector of a random
permutation σ. The latter satisfies the relation

(1.3) �(k̄(σ)) = n

involving dependence of the random variables kj(σ), 1 ≤ j ≤ n.

For simplicity, we will only deal with the linear statistics (or completely
additive function)

(1.4) h(σ) : =

n∑
j=1

ajkj(σ),

where ā : = (a1, . . . , an) ∈ Rn. By (1.3), we see that the function h(σ) is a
sum of dependent r.vs.

If En and Vn denote the mean value and the variance with respect to the
frequency νn, then [5]

Enh(σ) =
∑
j≤n

aj
j
,
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Dn(ā) : = Vnh(σ) =
∑
j≤n

a2j
j

−
∑
i,j≤n

aiaj
ij

1{i+ j > n} =

=: Bn(ā)−∆n(ā).(1.5)

Here 1{·} is the indicator function. The term ∆n(ā) is nonnegative for ā ∈ Rn
+

or ā ∈ Rn
−. Thus splitting the summands into nonnegative and negative parts

and using the inequality (x+ y)2 ≤ 2(x2+ y2) if x, y ∈ R, we easily derive that

Dn(ā) ≤ 2Bn(ā), ā ∈ R, n ∈ N.

Adopting the approach developed in aforementioned number-theoretical pa-
pers, the second of the authors established in [5] that

(1.6) τn : = sup
{Dn(ā)

Bn(ā)
: ā ∈ Rn \ {0̄}

}
≥ 3

2
− 3

n2 + n

for all n ≥ 1 and

(1.7) τn ≤ 3

2
+

3√
2(n2 + n)

if n is sufficiently large. A motivation for taking Bn(ā) to evaluate the variance
Vnh(σ) is seen from the inequalities

Bn(ā)(1− 2/n) ≤
∑
j≤n

Vn(ajkj(σ)) = Bn(ā)−
∑

n/2<j≤n

a2j
j2

≤ Bn(ā).

Improving (1.6) and (1.7), we have reached a final answer.

Theorem 1.1. For each n ≥ 2, we have τn = 3
2 .

Comparing this with Lee’s approximation (1.1) for the number-theoretic
functions, we see some declination. Let us include the dual inequality which
follows from 1.1 and Lemma 5.1 on page 81 of the book [1].

Theorem 1.2. Let y(σ) ∈ R, where σ ∈ Sn, be artitrary. Then

n∑
j=1

j

( ∑
σ∈Sn

y(σ)
(
kj(σ)−

1

j

))2

≤ 3

2
n!

∑
σ∈Sn

y(σ)2

if n ≥ 2.

In fact, our problem concerns quadratic forms. The substitution aj = xj

√
j,

1 ≤ j ≤ n, reduces Bn(ā) to the Euclidean norm ||x||2 = x2
1 + · · · + x2

n, and
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∆n(ā) becomes a quadratic form x̄Qnx̄
′ of rank n and the matrix Qn = ((qij)),

1 ≤ i, j ≤ n, where

(1.8) qij =
1{i+ j > n}√

ij
.

Now, by the definition of τn,
(1.9)

τn = 1− inf
{(

||x̄||−2Qn(x̄)
)
: x̄ �= 0̄

}
= 1−min{µ : µ is eigenvalue of Qn}.

This idea to search the minimal eigenvalue ofQn is implemented in the next Sec-
tion. Instead of its approximation by an eigenvalue of the appropriate integral
operator used in [5], we now involve discrete orthogonal polynomial sequences
and find this minimal value.

2. Proof of Theorem

1. We firstly find four eigenvalues of the matrix Qn. Denote ār = (ar1, . . . , arn)
and x̄r = (xr1, . . . , xrn), where arj =

√
jxrj and k = 1, 2, . . .

The additive function �(σ) defined via a1j = j, where 1 ≤ j ≤ n, equals
n for every σ ∈ Sn. Hence Vn�(σ) = 0 and Bn(ā1) = ∆n(ā1). This gives
a hint that µ1 = 1 is an eigenvalue of Qn corresponding to the eigenvector
x̄1 = (1, . . . ,

√
j, . . . ,

√
n). Indeed, by (1.8), we have x̄1Qn = 1 · x̄1.

Further we apply the Gram-Schmidt process orthonormalising a set of vec-
tors p̄r =

(
pr(1), pr(2), . . . , pr(n)

)
∈ Rn, where pr(y) ∈ R[y] are polynomials

of degree r and r = 0, 1, . . . . For the inner product, we take

< p̄r, p̄s >:=
n∑

j=1

jpr(j)ps(j).

A possible polynomial p1(y) of degree 1 satisfying < p̄0, p̄1 >= 0 is

p1(y) = 3y − (2n+ 1)

if n ≥ 1. Then we define a2j = jp1(j) =
√
jx2j , where 1 ≤ j ≤ n. With such a

choice we obtain x̄2Qn = (−1/2)x̄2 since

n∑
j=1

qijx2j =
1√
i

∑
n−i<j≤n

(
3j − (2n+ 1)

)
= −

√
i

2

(
3i− (2n+ 1)

)
= −x2i

2
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for each 1 ≤ i ≤ n. In other words, µ2 = −1/2 is the eigenvalue of Qn if n ≥ 2.

Let p2(y) = by2 + cy + d be such that

< p̄0, p̄2 >= 0, < p̄1, p̄2 >= 0

for every n ≥ 3. The requirements can be reduced to the system of equations

s3b+ s2c+ s1d = 0,(
3s4 − (2n+ 1)s3

)
b+

(
3s3 − (2n+ 1)s2

)
c+

(
3s2 − (2n+ 1)s1

)
d = 0,

where sk := 1k +2k + · · ·+nk, k = 1, 2, . . . , are the power sums. Applying the
formulas

(2.1) s := s1 =
n(n+ 1)

2
, s2 =

2n+ 1

3
s, s3 = s2, s4 =

2n+ 1

15
s(6s− 1),

we modify the previous system to

3n(n+ 1)b+ 2(2n+ 1)c+ 6d = 0,

3(2n+ 1)b+ 5c = 0.

Simplifying we may take c = −6(2n+ 1). Then b = 10 and d = 3n2 + 3n+ 2.
This gives

p2(y) = 10y2 − 6(2n+ 1)y + 3n2 + 3n+ 2.

We now define the vector x̄3 with coordinates x3j =
√
jp2(j), 1 ≤ j ≤ n, and

check that
∑

n−j<i≤n

qijx3i =
∑

n−j<i≤n

(bi2 + ci+ d) =

=
1

3

(
10j3 − 6(2n+ 1)j2 + 3n2 + 3n+ 2

)
=

1

3
x3j

if 1 ≤ j ≤ n. Thus x̄3 is the eigenvector corresponding to the value µ3 := 1/3
of the matrix Qn if n ≥ 3.

Finally, in the same manner looking for a polynomial p3(y) = by3 + cy2 +
+dy + e satisfying

< p̄0, p̄3 >= 0, < p̄1, p̄3 >= 0, < p̄2, p̄3 >= 0,

we discover the needed choice

b = 35, c = −30(2n+1), d = 5(6n2+6n+5), e = 2(2n+1)(4n2+4n−3).

Then we verify that the vector x̄4 with x4i =
√
i(bi3 + ci2 + di+ e), 1 ≤ i ≤ n,

satisfies

x̄4Qn = −1

4
x̄4.

if n ≥ 4. The eigenvalue µ4 = −1/4 is found.
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Luckily, at this point we may stop the involved calculations. We end the
first part of proof by

Remark 2.1. Let n ≥ 1 and Mn = {µr, 1 ≤ r ≤ n} be the spectrum of
matrix Qn. We guess that

Mn =
{
(−1)j−1/j, 1 ≤ j ≤ n

}
.

The matrix trace property

trace(Qn) =
n∑

j=1

µj =
∑

n/2<j≤n

1

j
=

n∑
i=1

(−1)i−1

i

supports the hypothesis but does not prove it. The computations using the
Maple program confirm it for all n ≤ 10. Moreover, we note that they showed
the evidence of the next equivalent form:

Mn+1 \Mn =
{ (−1)n

n+ 1

}
, n ≥ 1,

with the initial equality M1 = {1}.

2. Let us examine the remaining eigenvalues µr, where 5 ≤ r ≤ n. Maybe,
they depend on n. In any case, we claim that they are small in absolute value.
To prove this, examine the square of matrix

Q2
n =

((
uij

))
, 1 ≤ i, j ≤ n.

Then

uij =
n∑

k=1

qikqkj =
1√
ij

n∑
k=1

1{i+ k > n, j + k > n}
k

, 1 ≤ i, j ≤ n,

and

trace(Q2
n) =

n∑
j=1

ujj =
n∑

j=1

1

j

n∑
k=1

1{j + k > n}
k

=
n∑

k=1

1

k2
.

The last equality can be proved applying the induction argument. Using the
calculations of Part 1, we obtain

trace(Q2
n) = 1 +

1

4
+

1

9
+

1

16
+

∑
5≤r≤n

µ2
r.

Hence

max
5≤r≤n

µ2
r ≤

∑
5≤r≤n

µ2
r ≤

∞∑
k=5

1

k2
<

∞∫

4

du

u2
=

1

4
.
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Consequently,

min
5≤r≤n

µr > −1

2
.

In other words, the eigenvalue µ1 = −1/2 is the minimal one in the whole
spectrum Mn.

This completes the proof of Theorem. �
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