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Abstract. Let R be an integral domain of characteristic zero. We prove
that a function D : R → R is a derivation of order n if and only if D
belongs to the closure of the set of differential operators of degree n in
the product topology of RR, where the image space is endowed with the
discrete topology. In other words, f is a derivation of order n if and only
if, for every finite set F ⊂ R, there is a differential operator D of degree
n such that f = D on F . We also prove that if d1, . . . , dn are nonzero
derivations on R, then d1 ◦ . . . ◦ dn is a derivation of exact order n.

1. Introduction and main results

By a ring we mean a commutative ring with unit. An integral domain is a
ring with no zero-divisors other than 0. The ring R has characteristic zero if
n · x �= 0 for every x ∈ R \ {0} and for every positive integer n.

A derivation on a ring R is a map d : R → R such that

(1.1) d(x+ y) = d(x) + d(y) and d(xy) = d(x)y + d(y)x
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for every x, y ∈ R. Derivations of higher order are defined by induction as
follows (cf. [5]).

Let R be a ring. The identically 0 function defined on R is called the
derivation of order 0. Let n > 0, and suppose we have defined the derivations
of order at most n − 1. A function D : R → R is called a derivation of order
at most n, if D is additive and satisfies

(1.2) D(xy)−D(x)y −D(y)x = B(x, y)

for every x, y ∈ R, where B(x, y) is a derivation of order at most n− 1 in each
of its variables. We denote by Dn(R) the set of derivations of order at most n
defined on R. We may write Dn instead of Dn(R) if the ring R is clear from
the context. We say that the order of a derivation D is n if D ∈ Dn \ Dn−1.
(We have D−1 = ∅ by definition).

Clearly, a function d : R → R is a derivation if and only if d ∈ D1.

Now we define differential operators on a ring R. We say that the map
D : R → R is a differential operator of degree at most n if D is the lin-
ear combination, with coefficients from R, of finitely many maps of the form
d1 ◦ . . . ◦ dk, where d1, . . . , dk are derivations on R and k ≤ n. If k = 0 then we
interpret d1 ◦ . . . ◦ dk as the identity function on R. We denote by On(R) the
set of differential operators of degree at most n defined on R. We may write
On instead of On(R) if the ring R is clear from the context. We say that the
degree of a differential operator D is n if D ∈ On \ On−1 (where O−1 = ∅ by
definition).

The term “differential operator” is justified by the following fact. Let
K = Q(t1, . . . , tk), where t1, . . . , tk are algebraically independent over Q. Then
K is the field of all rational functions of t1, . . . , tk with rational coefficients. It
is clear that di =

∂
∂ti

is a derivation on K for every i = 1, . . . , k. Therefore,
every differential operator

(1.3) D =
∑

i1+...+ik≤n

ci1,...,ik · ∂i1+···+ik

∂ti11 · · · ∂tikk
,

where the coefficients ci1,...,ik belong to K, is a differential operator of degree
at most n. The converse is also true: if D is a differential operator of degree
at most n on the field K = Q(t1, . . . , tk), then D is of the form (1.3) (see [3,
Proposition 3.2] and the proof of Lemma 2.6 below).

Remark 1.1. If d is a derivation on R, then c · d is also a derivation for
every c ∈ R. Thus every differential operator is the sum of terms of the form
d1 ◦ . . . ◦ dk, where k ≥ 1 and d1, . . . , dk are derivations, and of a term c · j,
where c ∈ R and j is the identity function. Since d(1) = 0 for every derivation
d, it follows that a differential operator D satisfies D(1) = 0 if and only if the
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term c · j is missing; that is, if D is the sum of terms of the form d1 ◦ . . . ◦ dk,
where k ≥ 1 and d1, . . . , dk are derivations. We denote by On

0 the set of all
differential operators D of degree at most n satisfying D(1) = 0.

Let G be an Abelian semigroup, and let H be an Abelian group. The
difference operator ∆g (g ∈ G) is defined by ∆gf(x) = f(x + g) − f(x) for
every f : G → H and x ∈ G. A function f : G → H is a generalized polynomial,
if there is a k such that ∆g1 . . .∆gk+1

f = 0 for every g1, . . . , gk+1 ∈ G. The
smallest k for which this holds for every g1, . . . , gk+1 ∈ G is the degree of the
generalized polynomial f , denoted by deg f . The degree of the identically zero
function is −1 by definition. It is clear that the nonzero constant functions are
generalized polynomials of degree 0, and the nonconstant additive functions;
that is, the nonzero homomorphism from G to H, are generalized polynomials
of degree 1.

If X,Y are nonempty sets, then Y X denotes the set of all maps f : X → Y .
We endow the space Y with the discrete topology, and Y X with the product
topology. The closure of a set A ⊂ Y X with respect to the product topology
is denoted by clA. Clearly, a function f : X → Y belongs to clA if and only
if, for every finite set F ⊂ X there is a function g ∈ A such that f(x) = g(x)
for every x ∈ F .

It is clear that a function f : G → H is a generalized polynomial of degree
at most n if and only if, for every finite set F ⊂ G, there is a generalized
polynomial h of degree at most n such that f = h on F . This means that the
set of generalized polynomials of degree at most n is closed in HG.

If R is a ring, then we denote by R∗ the Abelian semigroup R \ {0} under
multiplication. We denote by j the identity function on R.

In this note our aim is to prove that, for every integral domain of charac-
teristic zero and for every positive integer n, we have Dn = clOn

0 . That is, a
map D : R → R is a derivation of order at most n if and only if D belongs to
the closure of the set of all differential operators of degree at most n satisfying
D(1) = 0. More precisely, we prove the following result.

Theorem 1.1. Let R be an integral domain of characteristic zero, K its field of
fractions, and let n be a positive integer. Then, for every function D : R → R,
the following are equivalent.

(i) D ∈ Dn(R).

(ii) D ∈ cl (On
0 (R)).

(iii) D is additive on R, D(1) = 0, and D/j, as a map from the semigroup R∗

to K, is a generalized polynomial of degree at most n.
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As an immediate consequence of the theorem above we find the following
corollary.

Corollary 1.1. Let R be an integral domain of characteristic zero, K its field of
fractions, and let n be a positive integer. Then, for every function D : R → R,
the following are equivalent.

(i) D ∈ Dn(R) \ Dn−1(R).

(ii) D ∈ (clOn
0 (R)) \ cl (On−1

0 (R)).

(iii) D is additive on R, D(1) = 0, and D/j, as a map from the semigroup R∗

to K, is a generalized polynomial of degree n.

Indeed, suppose D ∈ Dn\Dn−1. Then, by Theorem 1.1, we have D ∈ clOn
0 .

If D /∈ cl (On
0 ) \ cl (On−1

0 ), then D ∈ clOn−1
0 . This implies D ∈ Dn−1, which

is impossible. Therefore, (i) of Corollary 1.1 implies (ii) of Corollary 1.1. The
other implications can be shown similarly.

Remark 1.2. Theorem 1.1 and Corollary 1.1 do not hold without assuming
that R is of characteristic zero. Consider the following example.

Let F2 denote the field having two elements, and let R = F2[x] be the ring
of polynomials with coefficients from F2. We put

D

(
n∑

i=0

ai · xi

)
=

n∑
i=2

i(i− 1)

2
· ai · xi−2

for every n ≥ 0 and a0, . . . , an ∈ F2. It is easy to check that D is a derivation
of order at most two on R. Since D(x) = 0 and D(x2) = 1, it follows that D
is not a derivation, and thus D ∈ D2 \ D1.

On the other hand, if d1 and d2 are arbitrary derivations on R, then d1 ◦ d2
is also a derivation. Indeed,

d1(d2(x
k)) = d1(k·xk−1 ·d2(x)) = k(k−1)·xk−2 ·d1(x)·d2(x)+k·xk−1 ·d1(d2(x))

for every k ≥ 2. Since k(k − 1) is even, we find that

(1.4) (d1 ◦ d2)(xk) = k · xk−1 · a

for every k ≥ 2, where a = d1(d2(x)) ∈ R. It is easy to check that (1.4) is
true for k = 0 and k = 1 as well. Since derivations are additive, (1.4) gives
d1(d2(p)) = a · ∂p

∂x for every p ∈ R, and thus d1 ◦ d2 ∈ O1
0. This implies that

O2
0 = O1

0, and thus D2 is strictly larger than O2
0.
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Remark 1.3. In the proof of Theorem 1.1 the crucial step is to show that if R
is of characteristic zero and the transcendence degree of the field of fractions K
of R over Q is finite, then Dn = On

0 (see Lemma 2.7). Comparing to Theorem
1.1 we find that under these conditions, for every function f : R → R we have

(f ∈ Dn\Dn−1) ⇐⇒ (f ∈ On
0 \On−1

0 ) ⇐⇒ D is additive on K, D(1) = 0,
and D/j, defined on the group K∗, is a generalized polynomial of degree n.

We also prove that for every integral domain R of characteristic zero, if
there are nonzero derivation on R, then the sets Dn \ Dn−1 are nonempty;
that is, there are derivations of any given order. More precisely, we prove the
following.1

Theorem 1.2. Let R be an integral domain of characteristic zero, and let n be
a positive integer. If d1, . . . , dn are nonzero derivations on K, then d1◦. . .◦dn ∈
∈ Dn \ Dn−1.

(For integral domains of characteristic zero this generalizes [2, Remark 3],
where the case d1 = . . . = dn is considered.)

Remark 1.4. The statement of the theorem above does not hold without
assuming that R is of characteristic zero. Consider the example described in
Remark 1.2. Clearly, d(p) = ∂p

∂x (p ∈ R) defines a nonzero derivation on R.
However, as we saw in Remark 1.2, d ◦ d is a derivation of order 1.

The statement of the theorem is not true for rings in general; not even for
rings of characteristic zero. Let R = Q[x]×Q[x], and put d1(p, q) = ( ∂p∂x , 0) and

d2(p, q) = (0, ∂q
∂x ) for every (p, q) ∈ R. Then d1 and d2 are nonzero derivations

on R, but d1 ◦ d2 = 0.

2. Lemmas

Lemma 2.1. For every ring R and for every nonnegative integer n, the set
Dn is closed in RR.

Proof. We prove by induction on n. If n = 0, then D0 = {0} is closed. Let
n > 0, and suppose that Dn−1 is closed. Let f ∈ clDn be arbitrary. We have
to prove that f ∈ Dn; that is, for every fixed y ∈ R, the map x �→ g(x) =
= f(xy) − yf(x) − xf(y) belongs to Dn−1. By the induction hypothesis, it is

1Added in proof: it came to our notice recently that the statement of Theorem 1.2 was
also proved, using different methods, by Bruce Ebanks in his submitted paper ”Derivations
and Leibniz differences on rings”.
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enough to show that g ∈ clDn−1; that is, for every finite set F ⊂ R there is a
function h ∈ Dn−1 such that g(x) = h(x) for every x ∈ F .

If F is finite, then so is A = F ∪ {xy : x ∈ F} ∪ {y}. Since f ∈ clDn, there
is a function D ∈ Dn such that f(z) = D(z) for every z ∈ A. If x ∈ F , then
x, y, xy ∈ A, and thus

g(x) = f(xy)− yf(x)− xf(y) = D(xy)− yD(x)− xD(y).

The function x �→ h(x) = D(xy)−yD(x)−xD(y) belongs to Dn−1, as D ∈ Dn.
Since g(x) = h(x) for every x ∈ F , the lemma is proved. �

Lemma 2.2. For every ring R we have clOn
0 ⊂ Dn.

Proof. Since Dn is closed by Lemma 2.1, it is enough to show that On
0 ⊂ Dn.

Let D be a differential operator of degree at most n satisfying D(1) = 0.
According to Remark 1.1, D is the sum of terms of the form d1 ◦ . . . ◦ dk,
where 1 ≤ k ≤ n and d1, . . . , dk are derivations. Since Dn is a linear space, it
is enough to show that d1 ◦ . . . ◦ dk ∈ Dk whenever k ≥ 1 and d1, . . . , dk are
derivations. This, in turn, is easy to prove by induction on k. �

The statement of the following lemma is probably known. In order to make
these notes as self-contained as possible, we provide the proof.

Lemma 2.3. Let G be an Abelian semigroup, and let K be a field. If p : G → K
is a generalized polynomial of degree n ≥ 0 and a : G → K is a nonzero additive
function, then p · a is a generalized polynomial of degree at most n+ 1.

If K is of characteristic zero, then deg (p · a) = n+ 1.

Proof. We prove by induction on n. If n = 0, then p is a nonzero constant, and
p ·a is a nonzero additive function, hence a generalized polynomial of degree 1.

Let n > 0, and suppose that the statement is true for n − 1. Let p be a
generalized polynomial of degree n. We have

(2.1) ∆g(p · a)(x) = a(x) ·∆gp(x) + a(g) · p(x+ g)

for every x, g ∈ G. Since deg∆gp(x) ≤ n − 1, it follows from the induc-
tion hypothesis that deg (a(x) · ∆gp(x)) ≤ n. Therefore, by (2.1), we have
deg∆g(p · a) ≤ n for every g ∈ G, and thus deg (p · a) ≤ n + 1. We have to
prove that if K is characteristic zero, then deg (p · a) ≥ n+ 1.

Since the image space K is a torsion free and divisible Abelian group, it
follows from Djoković’s theorem [1] that p = Pn + . . .+ P1 + P0, where Pi is a
monomial of degree i for every i = 1, . . . , n, and P0 is constant. Then there is
a symmetric function A(x1, . . . , xn), additive in each of its variables, such that
Pn(x) = A(x, . . . , x) (x ∈ G). Since q = p− Pn is a generalized polynomial of
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degree ≤ n − 1, it follows from the induction hypothesis that deg (q · a) ≤ n.
Therefore, in order to prove deg (p · a) ≥ n + 1, it is enough to show that
deg (Pn · a) = n+ 1.

First we show that there exists an element g ∈ G such that Pn(g) �= 0
and a(g) �= 0. By assumption, there is an x ∈ G such that a(x) �= 0. Since
degPn = n ≥ 0, it follows that Pn is nonzero. Let y ∈ G be such that
Pn(y) �= 0. Now a(kx+ y) = k · a(x) + a(y) for every positive integer k. Since
a(x), a(y) ∈ K and a(x) �= 0, we have a(kx + y) �= 0 for every k with at most
one exception.

Using the fact that A(x1, . . . , xn) is symmetric and additive in each of its
variables, we find

(2.2) Pn(kx+ y) =

n∑
i=0

(
n

i

)
Ai(kx, y)

for every positive integer k, where

Ai(kx, y) = A(kx, . . . , kx︸ ︷︷ ︸
i

, y, . . . , y︸ ︷︷ ︸
k−i

) = ki ·A(x, . . . , x︸ ︷︷ ︸
i

, y, . . . , y︸ ︷︷ ︸
k−i

).

Therefore, by (2.2), Q(kx + y) is a polynomial of k with coefficients from K.
Since the constant term of this polynomial is A(y, . . . , y) �= 0, Q(kx+ y) is not
the identically zero polynomial, and thus Pn(kx + y) �= 0 for all but finitely
many k. Therefore, we may choose a k such that Pn(g) �= 0 and a(g) �= 0,
where g = kx+ y.

Let Q = Pn ·a, and suppose that degQ ≤ n. Then Q = Qn+ . . .+Q1+Q0,
where Qi is a monomial of degree i for every i = 1, . . . , n, and Q0 is constant.
For every i = 1, . . . , n, there is there is a symmetric function Bi(x1, . . . , xi),
additive in each of its variables, such that Qi(x) = Bi(x, . . . , x) (x ∈ G). Then

Q(k · g) = Q0 +

n∑
i=1

Bi(kg, . . . , kg) = Q0 +

n∑
i=1

ki ·Bi(g, . . . , kg)

for every positive integer k. Therefore, the map k �→ Q(k · g) is a polynomial
of degree ≤ n with coefficients from K. However,

Q(k · g) = kn ·A(g, . . . , g) · k · a(g) = kn+1 ·A(g, . . . , g) · a(g)

is a polynomial of degree n+1. This is a contradiction, proving degQ = n+1.

�
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Lemma 2.4. Let R be an integral domain, and let K be its field of fractions.
If d1, . . . , dn are nonzero derivations on R and D = d1 ◦ . . . ◦ dn, then D/j, as
a map from the semigroup R∗ to K, is a generalized polynomial of degree at
most n.

If R is of characteristic zero, then degD/j = n.

Proof. We prove by induction on n. If n = 1, then D is a nonzero derivation.
It is clear that in this case D/j is additive, hence a generalized polynomial of
degree at most 1 on the semigroup R∗. Suppose degD/j ≤ 0. Then D/j is
constant on R∗, and thus D = c · j on R, where c ∈ R is a constant. Since
D is a derivation, we have c = D(1) = 0 and d = 0, a contradiction. Thus
degD/j = 1.

Suppose that n > 1, and the statement is true for n− 1. Let d1, . . . , dn be
nonzero derivations on R. By the induction hypothesis, (d2 ◦ . . . ◦ dn)/j = p is
a generalized polynomial of degree at most n− 1. Since d1 is a derivation, we
have

D(x) = (d1 ◦ . . . ◦ dn)(x) = d1(p(x) · x) = d1(p(x)) · x+ p(x) · d1(x)

for every x ∈ R∗. Thus

(2.3) D/j = (d1 ◦ p) + p · (d1/j)

on R∗. Since p : R∗ → K is a generalized polynomial of degree ≤ n − 1
and d1 : R → R is additive, it follows that d1 ◦ p is a generalized polyno-
mial of degree ≤ n− 1 on R∗. (This is because, if G is an Abelian semigroup,
H is an Abelian group, p : G → H is a generalized polynomial of degree k,
and d : H → H is additive, then d ◦ p is a generalized polynomial of degree at
most k.)

If R is of characteristic zero, then so is K. In this case p · (d1/j) is a
generalized polynomial of degree n by Lemma 2.3, since d1/j is nonzero and
additive on R∗. Therefore, D/j is a generalized polynomial of degree n. �

Lemma 2.5. Let R be an integral domain, and let K be its field of fractions. If
D ∈ clOn

0 (R), then D/j, as a map from the semigroup R∗ to K, is a generalized
polynomial of degree at most n.

Proof. Let D ∈ clOn
0 be given. As the set of generalized polynomials of degree

≤ n is closed, it is enough to show that for every finite set F ⊂ R∗ there is a
generalized polynomial p : R∗ → K such that deg p ≤ n and D/j = p on F .
Since D ∈ clOn

0 , there is an f ∈ On
0 such that D = f on F . It is clear from

Remark 1.1 and Lemma 2.4 that f/j is a generalized polynomial of degree at
most n. Now we have D/j = f/j on F , completing the proof. �

The statement of the following lemma is proved, in a different context, in
Lemma 3.3 of [3]. We give the proof adjusted to our purposes.
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Lemma 2.6. Let R be a subring of C, let K ⊂ C be its field of fractions,
and suppose that the transcendence degree of K over Q is finite. Let the map
D : R → R be additive. If D/j, as a map from the semigroup R∗ to C is a
generalized polynomial of degree at most n, then D ∈ On.

Proof. Let k be the transcendence degree of K over Q, and let the elements
u1, . . . , uk ∈ K be algebraically independent over Q. Let ui = ai/bi, where
ai, bi ∈ R for every i = 1, . . . , k. Then the field Q(a1, b1, . . . , ak, bk) has
transcendence degree k over Q, and thus we can chose elements t1, . . . , tk ∈
∈ {a1, b1, . . . , ak, bk} ⊂ R∗ such that t1, . . . , tk are algebraically independent
over Q.

By assumption, the function p = D/j is a generalized polynomial of degree
≤ n on R∗. By Djoković’s theorem, we have p = Pn + . . .+ P1 + P0, where Pj

is a monomial of degree j for every j = 1, . . . , n, and P0 is constant. Using the
fact that Pj(x) = Aj(x, . . . , x), where Aj(x1, . . . , xj) is symmetric and additive
in each of its variables, it is easy to see that for every j = 1, . . . , n there is a
homogeneous polynomial pj ∈ K[x1, . . . , xk] of degree j such that

Pj

(
ti11 · · · tikk

)
= pj(i1, . . . , ik)

whenever i1, . . . , ik are nonnegative integers. (Note that the semigroup op-
eration in R∗ is multiplication.) Putting p = P0 +

∑n
j=1 pj we find that

p ∈ K[x1, . . . , xk], and

p
(
ti11 · · · tikk

)
= p(i1, . . . , ik)

for every i1, . . . , ik ≥ 0. We shall use the notation x[0] = 1 and x[j] =
= x(x − 1) · · · (x − j + 1) for every j = 1, 2, . . . and x ∈ Z. It is easy to
see that every polynomial belonging to K[x1, . . . , xk] and of degree ≤ n can be

written in the form
∑

cj ·x[j1]
1 · · ·x[jk]

k , where j = (j1, . . . , jk) runs through the
set of k-tuples of nonnegative integers with j1 + . . .+ jk ≤ n, and in each term
the coefficient cj belongs to K. Therefore, the polynomial p also has such a
representation. Then we have

D
(
ti11 · · · tikk

)
= p

(
ti11 · · · tikk

)
· ti11 · · · tikk =

=
∑

cj · i[j1]1 · · · i[jk]k · ti11 · · · tikk =

=
∑

cj · tj11 · · · tjkk · i[j1]1 · · · i[jk]k · ti1−j1
1 · · · tik−jk

k =

= E
(
ti11 · · · tikk

)
(2.4)

for every i1, . . . , ik ≥ 0, where E is the differential operator

∑
cj · tj11 · · · tjkk · ∂j1+···+jk

∂tj11 · · · ∂tjkk
.
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By extending the derivations ∂/∂ti to K, we can extend E to K as a differ-
ential operator E of degree at most n. Then E is additive on K, and E/j
is a generalized polynomial on K∗ by Lemma 2.4. Let q(0) = 0, and let
q(x) = p(x) − E(x)/x for every x ∈ R∗. Then q · j = D − E is additive on
R, and q is a generalized polynomial on R∗. Let G denote the semigroup gen-
erated by the elements t1, . . . , tk. Then q vanishes on G by (2.4). From these
conditions it follows that q = 0 on R. This is proved in [3, Lemma 3.6] under
the stronger condition that G is the group (and not the semigroup) generated
by t1, . . . , tk. One can see that the same argument works in our more general
case as well; however, for the sake of completeness we give the proof in the
appendix. Thus we have q = 0; that is, D = E on R, which completes the
proof. �

Lemma 2.7. Let R be a subring of C, let K ⊂ C be its field of fractions, and
suppose that the transcendence degree of K over Q is finite. Then Dn(R) =
= On

0 (R).

Proof. By Lemma 2.2, we only have to show that Dn ⊂ On
0 . It is easy to

prove, by induction on n that if D ∈ Dn, then D(1) = 0. Therefore, it is
enough to show that if D ∈ Dn, then D is a differential operator of degree at
most n. We prove by induction on n.

The statement is obvious if n = 0. Let n > 0, and suppose that the
statement is true for n − 1. Let D be a derivation of order at most n. By
Lemma 2.6, it is enough to show that p = D/j, defined on the semigroup R∗,
is a generalized polynomial of degree at most n. Let y ∈ R∗ be fixed. Dividing
(1.2) by xy we obtain

D(xy)

xy
− D(x)

x
− D(y)

y
=

B(x, y)

xy
,

and thus p(xy)−p(x)−p(y) = B(x, y)/xy for every x ∈ R∗. Therefore we have

(2.5) ∆yp(x) = p(y) +
1

y
· B(x, y)

x

on R∗. The map x �→ B(x, y) is a derivation of order at most n − 1. We also
have B(1, y) = 0 by D(1) = 0. Therefore, by the induction hypothesis and by
Lemma 2.4, the map x �→ B(x, y)/x is a generalized polynomial of degree at
most n − 1. Then so is ∆yp by (2.5). Since this is true for every y ∈ R∗, it
follows that p is a generalized polynomial of degree at most n. �
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3. Proof of Theorems 1.1 and 1.2

First we prove Theorem 1.1. The implication (ii)=⇒(iii) is proved in Lemma
2.5.

(iii)=⇒(ii): Suppose that D is additive, D(1) = 0, and D/j is a generalized
polynomial of degree at most n. In order to prove D ∈ clOn

0 , we have to show
that for every finite set F ⊂ K there is a function f ∈ On

0 such that D = f
on F . Let F ⊂ K be finite, and let L denote the subfield of K generated by
F . Obviously, the transcendence degree of L over Q is finite. It is well-known
that every field of characteristic zero and having finite transcendence degree
over Q is isomorphic to a subfield of C. Therefore, we may assume that L ⊂ C.
Thus, by Lemma 2.6, the restriction D|L of D to the field L is a derivation of
order at most n. Since D(1) = 0, we also have D|L ∈ On

0 (L). It is well-known
that every derivation on L can be extended to K as a derivation (see [4, pp.
351-352]). This implies that every differential operator on L of degree at most
n can be extended to K as a differential operator of degree at most n. If f is
such an extension of D|L, then, obviously, D(x) = f(x) for every x ∈ F . This
proves (iii)=⇒(ii).

(ii)=⇒(i): This is Lemma 2.2.

(i)=⇒(ii): Let D ∈ Dn. In order to prove f ∈ clOn
0 we have to show that for

every finite set F ⊂ K there is a function f ∈ On
0 such that D = f on F . Let

L denote the field generated by F . Obviously, the transcendence degree of L
over Q is finite. Thus, by Lemma 2.7, the restriction D|L of D to the field L is
a derivation of order at most n, vanishing at 1. Let f be an extension of D|L
to K as a function f ∈ On

0 . Then, obviously, D(x) = f(x) for every x ∈ F .
This proves (i)=⇒(ii). �

The statement of Theorem 1.2 is an immediate consequence of Corollary 1.1
and Lemma 2.4. �

4. Appendix

Lemma 4.1. Let R be a subring of C, and let K ⊂ C be its field of fractions.
Suppose that the transcendence degree of K over Q is k < ∞, and let the
elements t1, . . . , tk ∈ R be algebraically independent over Q. Let f : R → C be
additive on R (with respect to addition) and such that q = f/j, as a map from
the semigroup R∗ to C is a generalized polynomial. If f = 0 on the semigroup
G generated by t1, . . . , tk, then f = 0 on R.
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Proof. We prove by induction on deg q. If deg q = 0, then q is constant. Since
f = 0 on G, we have q = 0 on G, and thus q = 0 on R.

Suppose m = deg q > 0, and that the statement is true for degrees less than
m. Let g ∈ G be fixed, and put f1(x) = g−1f(gx)− f(x) (x ∈ R). Then f1 is
additive on R. Also, f1/j is a generalized polynomial on R∗, since

f1(x)

x
=

g−1f(gx)− f(x)

x
=

f(gx)

gx
− f(x)

x
= q(gx)− q(x) = ∆gq(x)

for every x ∈ R∗. Since deg (f1/j) = deg∆gq ≤ m − 1 and f1 = 0 on G, it
follows from the induction hypothesis that f1 = 0 on R. Thus f(gx) = g · f(x)
for every g ∈ G and x ∈ R. By the additivity of f we obtain

(4.1) f(cx) = c · f(x) (c ∈ Q[t1, . . . , tk], x ∈ R).

Since the transcendence degree of K over Q is k and t1, . . . , tk are algebraically
independent over Q, it follows that every element of K is algebraic over
Q(t1, . . . , tk). Let α ∈ R be arbitrary. Then α is algebraic over the field
Q(t1, . . . , tk), and there are elements c0, . . . , cN ∈ Q[t1, . . . , tk] such that

(4.2) cNαN + . . .+ c1α+ c0 = 0,

where cN �= 0 and N is minimal. Let f(αi) = ai (i = 0, 1, . . .). Multiplying
(4.2) by αn−N for every n ≥ N we obtain

cNαn + . . .+ c1α
n−N+1 + c0α

n−N = 0.

By (4.1) and by the additivity of f , this implies

cNan + . . .+ c1an−N+1 + c0an−N = 0

for every n ≥ N . Therefore, the sequence (an) satisfies a linear recurrence
relation. It is well-known that an can be uniquely represented in the form
an =

∑
λ∈Λ pλ(n) · λn, where λ runs through Λ, the set of roots of the charac-

teristic polynomial χ(x) = cNxN + . . .+c0, and for every root λ ∈ Λ, pλ ∈ C[x]
is a polynomial of the degree less than the multiplicity of λ.

Since N is minimal, the polynomial χ is irreducible over Q(t1, . . . , tk).
Therefore, every λ is a simple root of χ, and thus

(4.3) an =
∑
λ∈Λ

dλ · λn

for every n, where dλ is a constant for every λ ∈ Λ.
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Since q is a generalized polynomial on R∗ it follows that the map n �→ q(αn)
is a polynomial on {0, 1, . . .}. Now, we have an = f(αn) = q(αn)·αn for every n.
The uniqueness of the representation (4.3) implies that α ∈ Λ, and the function
n �→ q(αn) (n = 0, 1, . . .) is constant. Since q(1) = f(1) = 0 by 1 ∈ G, it follows
that q(αn) = 0 for every n. In particular, q(α) = 0 and f(α) = 0. Since this is
true for every α ∈ R, we obtain f = 0 on R. �
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