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Abstract. In this paper we describe some results of Indlekofer for mul-
tiplicative functions. Especially we give the definition for the class F of
exp-log functions introduced by Indlekofer in [13]. Further, we compare
Indlekofer’s results with recent investigations [5, 6] by Granville et. al..

1. Multiplicative function on N

Let f : N → C be a multiplicative function, i.e.

f(mn) = f(m)f(n) for (m,n) = 1.

The mean value of f is defined by

M(f) := lim
x→∞

x−1
∑
n≤x

f(n)

if the limit exists.
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Delange [3] proved in 1961 under the assumption |f(n)| ≤ 1 for all n ∈ N
that the mean value M(f) exists and is different from zero if and only if the
series

(1.1)
∑
p

1− f(p)

p

converges, and for some positive k, f(2k) �= −1.

Wirsing [18] showed in 1967, that if f is real-valued and the series (1.1)
diverges, then M(f) = 0. This implies that M(f) always exists for all real-
valued multiplicative function with |f | ≤ 1.

Halász [7] proved in 1968 the following

Proposition 1.1. Let f : N → C be multiplicative, |f | ≤ 1. If there exists a
real number a0 so that the series

(1.2)
∑
p

p−1(1−Ref(p)p−ia)

converges for a = a0, then, as x → ∞,

x−1
∑
n≤x

f(n) =
xia0

1 + ia0

∏
p≤x

(
1− p−1

)(
1 +

∞∑
m=1

p−m(1+ia0)f(pm)

)
+ o(1).

If the series (1.2) diverges for all a ∈ R, then

x−1
∑
n≤x

f(n) = o(1) (x → ∞).

In either case there are constant c, c0 and a slowly oscillating function L(u)
with |L(u)| = 1, so that, as x → ∞,

x−1
∑
n≤x

f(n) = cxia0L(log x) + o(1).

The proof of the proposition is based on analytic methods. Elementary
proofs of the Halász theorem were given by Daboussi and Indlekofer [1]. A
simpler and shorter proof has been shown by Indlekofer in [11].

The wish to abandon the restriction on the size of f led to the investigation
of multiplicative functions which belong to the class Lα, α ≥ 1. Here, for
1 ≤ α < ∞,

Lα := {f : N → C, ‖f‖α < ∞}
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denotes the linear space of arithmetic functions with bounded seminorm

‖f‖α :=


lim sup

x→∞
x−1

∑
n≤x

|f(n)|α



1/α

.

Obviously the functions considered by Delange, Wirsing and Halász belong
to every class Lα.

A characterization of multiplicative functions f ∈ Lα(α > 1) which possess
a non-zero mean value M(f) was independently given by Elliott and Daboussi
in [4] and [2], respectively. Indlekofer [8] introduced the space L∗ of uniformly
summable functions. f ∈ L∗ iff f ∈ L1 and

lim
K→∞

sup
N≥1

N−1
∑
n≤N

|f(n)|>K

|f(n)| = 0.

Obviously

Lα � L∗ � L1 if α > 1.

The idea of uniform summability turned out to provide the appropriate tools for
describing the mean behaviour of multiplicative functions. Indlekofer proved
in [8, 9, 10] generalizations of the results of Delange, Wirsing and Halász for
multiplicative functions f ∈ L∗.

In [9] Indlekofer described the connections of uniform summability with the
existence of a limit distribution for real-valued multiplicative functions and the
uniform distribution of positive valued multiplicative functions.

To be precise we say that the real-valued f has a limiting distribution Ff

if the frequencies

Ff,x(y) := x−1
∑
n≤x

f(n)≤y

1

converge to a limiting distribution Ff in the usual probabilistic sense. We call
the distribution Ff degenerate if Ff (y) = 0 for y < 0 and Ff (y) = 1 for y ≥ 0,
and nondegenerate otherwise.

On the other hand, following Erdös, we say that the values of a function
f : N → (0,∞) are uniformly distributed in (0,∞) (briefly, f is u.d. in (0,∞))
if f(n) tends to infinity as n → ∞ and if there exists a positive c such that as
y → ∞

N(y, f) :=
∑

n
f(n)≤y

1 ∼ cy as y → ∞.

With these notations Indlekofer proved the following three results.
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Proposition 1.2. (See [9], Theorem 1.) Let the real-valued multiplicative func-
tion f ∈ L∗. Then

(i) f possesses a limiting distribution Ff if and only if the mean-value M(|f |)
exists

(
and has the value

∫ +∞
−∞ |y|dFf (y) then

)
, and

(ii) this limiting distribution is degenerate if and only if M(|f |) = 0.

Proposition 1.3. (See [9], Theorem 2.) Let f : N → R be multiplicative and
uniformly summable. Then the existence of M(|f |) implies the existence of
M(f).

Proposition 1.4. (See [9], Theorem 4.) Let f be multiplicative and > 0. Then
the following assertions are equivalent.

(i) 1/f ∈ L∗ and f possesses a non-degenerate limiting distribution.

(ii) (α) f · id is uniformly distributed in (0,∞).
(β) There exists a constant K > 0 such that

∑
n≤x

f(n)≤K

1 � x for all x > 0.

(γ) For all positive x

∑
n≤x

1/f(n) � x.

Let us come back to the investigations of
∑
n≤x

f(n) for multiplicative func-

tions |f | ≤ 1. Indlekofer, Kátai and Wagner [12] used the methods of [11] to
compare

∑
n≤x

f(n) with
∑
n≤x

g(n) where g ≥ 0 is multiplicative and |f | ≤ g.

They showed

Proposition 1.5. (See [12], Theorem.) Let g be a multiplicative function which
assumes real nonnegative values only. Let

∑
p≤x

log p

p
g(p) ∼ τ log x, x → ∞,

hold with a constant τ > 0. Furthermore, let g(p) = O(1) for all primes p, and
let ∑

p,k≥2

p−kg(pk) < ∞.
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Besides this, if τ ≤ 1, then let

∑
pk≤x,k≥2

g(pk) = O
(
x(logx)−1

)
.

Let f be a complex-valued function, which satisfies |f(n)| ≤ g(n) for every
positive integer n. If there exists a real number a0 such that the series

(1.3)
∑
p

p−1(g(p)−Ref(p)p−ia)

converges for a = a0, then

∑
n≤x

f(n) =
xia0

1 + ia0

∏
p≤x

(
1 +

∞∑
m=1

f(pm)

pm(1+ia0)

)(
1 +

∞∑
m=1

g(pm)

pm

)−1

×

×
∑
n≤x

g(n) + o


∑

n≤x

g(n)




as x → ∞. If the series (1.3) diverges for all a ∈ R, then

∑
n≤x

f(n) = o


∑

n≤x

g(n)


 , x → ∞.

In both cases, there are constants c, a0 and a slowly oscillating function L̃ with
|L̃(u)| = 1 such that, as x → ∞,

∑
n≤x

f(n) =
(
cxia0L̃(log x) + o(1)

)∑
n≤x

g(n).

As an example let us consider the generalized divisor function dκ for κ > 0.
Here the multiplicative function dκ is defined by

∞∑
n=1

dκ(n)n
−s = ζκ(s).

It is well known that

∑
n≤x

dκ(n) ∼ cκx(log x)
κ−1 as x → ∞.

Obviously, g = dκ fulfills all conditions of Proposition 1.5. Thus we have
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Corollary 1.1. Let f : N → C be multiplicative such that |f | ≤ dκ(κ > 0).
Then, if there exists a real number a0 such that the series

(1.4)
∑
p

p−1(κ−Ref(p)p−ia)

converges for a = a0, then

∑
n≤x

f(n) =
xia0

1 + ia0

∏
p≤x

(
1 +

∞∑
m=1

f(pm)

pm(1+ia0)

)(
1− 1

p

)κ ∑
n≤x

dκ(n)+

+o


∑

n≤x

dκ(n)




as x → ∞. If the series (1.4) diverges for all a ∈ R, then

∑
n≤x

f(n) = o


∑

n≤x

dκ(n)


 , x → ∞.

In both cases, there are constants c, a0 and a slowly oscillating function L̃ with
|L̃(u)| = 1 such that, as x → ∞,

∑
n≤x

f(n) =
(
cxia0L̃(log x) + o(1)

)∑
n≤x

dκ(n).

Remark 1.1. In a recent paper Granville et.al. [6] gave upper estimates for∑
n≤x f(n) where f : N → C is multiplicative and |f | ≤ dκ.

2. Multiplicative function on additive arithmetical semigroups

Let (G, ∂) be an additive arithmetical semigroup that is, by definition, G is
a free abelian semigroup with identity element 1 such that G has a countable
free generating set P of ”primes” and ∂ : G → N ∪ {0} is a ”degree mapping”
satisfying

(i) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,

(ii) the total number G(n) of elements of degree n in G is finite for each
n ≥ 0.
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In particular, if we assume G(n) � qnn� with some � and q > 1 then

Ẑ(z) :=

∞∑
n=0

G(n)zn =
∞∏

m=1

(1− zm)−P (m)

is the zeta function associated with G, where P (m) denotes the total number
of primes of degree m in G. (See for details Knopfmacher [15], Knopfmacher
and Zhang [16]).

Obviously

log

∞∏
m=1

(1− zm)−P (m) =

∞∑
m=1

P (m)

∞∑
j=1

j−1zjm =

=
∞∑

m=1

1

m

∑
d|m

dP (d)zm =
∞∑

m=1

Λ̄(m)

m
zm,

where
Λ̄(m) =

∑
d|m

dP (d).

Then, since P (d) ≤ G(d) � qdd�,

Λ̄(m) = mP (m) +O


mG(

m

2
)
∑
r≤m

1

r


 =

= mP (m) +O
(
mq

m
2 (

m

2
)� logm

)
.

Putting y = qz, λ(m) = q−mΛ̄(m) and γ(n) = q−nG(n) leads to

Z(y) := Ẑ(yq−1) =
∞∑

n=0

γ(n)yn = exp

( ∞∑
m=1

λ(m)

m
ym

)
.

Observe
λ(m)

m
= q−m

∑
p∈P

∂(p)=m

1 +O
(
q−m/2m� logm

)
.

Let f̃ : G → C be a multiplicative function on G, i.e. f̃(1) = 1 and

f̃(ab) = f̃(a)f̃(b) for all coprime a, b ∈ G.

Put
f(n) := q−n

∑
a∈G

∂(a)=n

f̃(a).
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Then the generating function of f is given by

F (y) :=

∞∑
n=0

f(n)yn =
∑
a∈G

f̃(a)q−∂(a)y∂(a) =

=
∏
p

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)yk∂(p)

)
=

= exp

( ∞∑
m=1

λf (m)

m
ym

)
.

This holds at least in a formal sense since f(0) = 1 ( �= 0). It is also valid
for complex values y, |y| < 1 in terms of ordinary convergence if, for example,
the function f̃ is multiplicative of modulus ≤ 1. Then |λf (m)| ≤ λ(m) and
|f(n)| ≤ γ(n) for all m,n ∈ N.

Furthermore, here we consider additive arithmetical semigroups satisfying

(2.1) Ẑ(z) =
∞∑

n=0

G(n)zn =
H(z)

(1− qz)δ
= exp

( ∞∑
m=1

λ(m)

m
qmzm

)

where δ is a positive number, and we assume that 0 ≤ λ(m) � 1, H(z) = O(1)
for |z| < q−1 and

lim
z↗q−1

H(z) = A > 0.

It is well known [14] that under these conditions

q−nG(n) ∼ A
nδ−1

Γ(δ)
as n → ∞.

Example 2.1. Let Fq[X] denote the polynomial ring in an indeterminate X
over the finite Galois field Fq with q elements (q prime power). The subset
Gq = G(q,X) consisting of all monic polynomials in Fq[X] forms a semigroup
under multiplication. In particular, Gq together with the usual degree mapping
on polynomials defines an additive arithmetical semigroup such that

Gq(n) = qn (n = 0, 1, 2, ...).

The generating function Ẑq of Gq is given by ( |z| < q−1)

(2.2) Ẑq(z) =

∞∑
n=0

Gq(n)z
n =

1

1− qz
= exp

( ∞∑
m=1

qm

m
zm

)
.



On some results of Indlekofer for multiplicative functions 25

For more general investigations Indlekofer [13] introduced the class F of
exp-log functions. For this let

(2.3) Z(y) =

∞∑
n=0

γ(n)yn = exp

( ∞∑
m=1

λ(m)

m
ym

)

be holomorphic for |y| < 1 where

(2.4) 0 ≤ λ(m) = O(1), m ∈ N,

and

(2.5) |Z(y)| � Z(|y|)
∣∣∣∣
1− |y|
1− y

∣∣∣∣
ε

, (|y| < 1)

for some ε > 0. Further, putting

B(n) = exp


∑

m≤n

λ(m)

m


 ,

we assume that

(2.6) nγ(n) � B(n)

and

(2.7) B(m) = o(B(n)) if m = o(n), n → ∞.

Then we say that the function Z given in (2.3) belongs to te exp-log class F in
case (2.4), (2.5), (2.6) and (2.7) hold.

Example 2.2. The generating functions Z(y) = Ẑ(q−1z) (see (2.1)) of additive
arithmetical semigroups belong to the class F . Observe that, for r = 1− 1

n ,

B(n) = exp


∑

m≤n

λ(m)

m


 � exp


∑

m≤n

λ(m)

m
rm




� Z(r) � (1− r)−δ = nδ,

which implies
B(m)

B(n)
� (

m

n
)δ = o(1) if m = o(n).

As a further example we mention (see [13], Example 4)

Z(y) = exp

( ∞∑
m=1

λ(m)

m
ym

)
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where
0 < c1 ≤ λ(m) ≤ c2 < ∞ (m ∈ N).

Then, obviously

|Z(y)| = Z(|y|) exp

( ∞∑
m=1

λ(m)

m
|y|m(cos(mt)− 1)

)
≤

≤ Z(|y|) exp

(
c1

∞∑
m=1

|y|m

m
(cos(mt)− 1)

)
=

= Z(|y|)
∣∣∣∣
1− |y|
1− y

∣∣∣∣
c1

and

B(m)

B(n)
= exp


−

∑
m<l≤n

λ(l)

l


 � exp

(
c1 log

m

n

)
= o(1)

if m = o(n)(n → ∞). Elementary estimates immediately yield

nγ(n) � B(n),

where the constants involved in � only depend on c1 and c2 (see Manstavičius
[17], Lemma 3.1).

Now, if the function

(2.8) F (y) =
∞∑

n=0

f(n)yn = exp

( ∞∑
m=1

λf (m)

m
ym

)

(|y| < 1) is given then the following result holds.

Theorem 2.1. Let Z be an element of the exp-log class F and let F (y) in
(2.8) satisfy |λf (m)| ≤ λ(m) for all m ∈ N. Then the following two assertions
hold

(i) Let

(2.9)

∞∑
m=1

λ(m)−Reλf (m)eima

m

converge for some a ∈ R. Put

An := exp


−ina+

∑
m≤n

λf (m)eima − λ(m)

m


 .

Then
f(n) = Anγ(n) + o(γ(n)) as n → ∞.
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(ii) Let (2.9) diverge for all a ∈ R. Then

f(n) = o(γ(n)) as n → ∞.

We apply Theorem 2.1 to multiplicative functions on Gq, where Gq is the
additive arithmetical semigroup of monic polynomials over the Galois field with
q elements.

Define the generalized divisor function d̄k on Gq by

∞∑
n=0

dκ(n)z
n = (Ẑq(z))

κ =
1

(1− qz)κ
=

= exp

( ∞∑
m=1

κqm

m
zm

)
,

where dκ(n) =
∑

a∈Gq
∂(a)=n

d̄κ(a). Obviously

q−ndκ(n) =

(
κ+ n− 1

n

)
∼

∼ nκ−1

Γ(κ)
as n → ∞.

Corollary 2.1. Let κ > 0. Let f̃ : Gq → C be multiplicative such that
|λf (m)| ≤ κ for all m ∈ N. Then the following two assertions hold.

(i) Let

(2.10)
∞∑

m=1

κ−Reλf (m)eima

m

converge for some a ∈ R. Put

An := exp


−ina+

∑
m≤n

Reλf (m)eima − κ

m


 .

Then

f(n) := q−n
∑
a∈Gq

∂(a)=n

f̄(a) = An
nκ−1

Γ(κ)
+ o(nκ−1).

(ii) Let (2.10) diverge for all a ∈ R. Then

f(n) = o(nκ−1) as n → ∞.

Remark 2.1. In a recent paper Granville et. al. [5] investigated upper
estimates for q−n

∑
a∈Gq

∂(a)=n

f̄(a) where |λf (m)| ≤ κ for all m ∈ N.
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