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Abstract. In this paper we describe some results of Indlekofer for mul-
tiplicative functions. Especially we give the definition for the class F of
exp-log functions introduced by Indlekofer in [13]. Further, we compare
Indlekofer’s results with recent investigations [5, 6] by Granville et. al..

1. Multiplicative function on N

Let f: N — C be a multiplicative function, i.e.
f(mn) = f(m)f(n) for (m,n)=1.
The mean value of f is defined by

M(f):= lim a=t ) f(n)
n<x

if the limit exists.
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Delange [3] proved in 1961 under the assumption |f(n)| < 1 for all n € N
that the mean value M (f) exists and is different from zero if and only if the
series

(1.1) 271 75@)

p

converges, and for some positive k, f(2F) # —1.

Wirsing [18] showed in 1967, that if f is real-valued and the series (1.1)
diverges, then M (f) = 0. This implies that M(f) always exists for all real-
valued multiplicative function with |f] < 1.

Haldsz [7] proved in 1968 the following

Proposition 1.1. Let f : N — C be multiplicative, |f| < 1. If there exists a
real number ag so that the series

(1.2) Zp (1 — Ref(p)p~™)

converges for a = ag, then, as x — o0,

o = T a0 (1 + me“““f))f(pm)) +o(1).

n<zx p<lx m=1

If the series (1.2) diverges for all a € R, then

271y f(n) =o(1) (z— ).

n<x

In either case there are constant c,co and a slowly oscillating function L(u)
with |L(u)| = 1, so that, as © — oo,

z! Z f(n) = cz' L(logz) + o(1).

n<z

The proof of the proposition is based on analytic methods. Elementary
proofs of the Haldsz theorem were given by Daboussi and Indlekofer [1]. A
simpler and shorter proof has been shown by Indlekofer in [11].

The wish to abandon the restriction on the size of f led to the investigation
of multiplicative functions which belong to the class L% o« > 1. Here, for
1 <a< oo,

LY ={f:N=C,|flla <o}
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denotes the linear space of arithmetic functions with bounded seminorm
1/a

[ £lla = imsupa™ 3 | (n)|*

n<x

Obviously the functions considered by Delange, Wirsing and Haldsz belong
to every class L.

A characterization of multiplicative functions f € L%(« > 1) which possess
a non-zero mean value M(f) was independently given by Elliott and Daboussi
in [4] and [2], respectively. Indlekofer [8] introduced the space L£* of uniformly
summable functions. f € £* iff f € L1 and

lim sup N7! n)| = 0.
Jim_sup NS2 |7
[F()|>K

Obviously
ﬁagﬁ*gﬁl if a>1

The idea of uniform summability turned out to provide the appropriate tools for
describing the mean behaviour of multiplicative functions. Indlekofer proved
in [8, 9, 10] generalizations of the results of Delange, Wirsing and Haldsz for
multiplicative functions f € L£*.

In [9] Indlekofer described the connections of uniform summability with the
existence of a limit distribution for real-valued multiplicative functions and the
uniform distribution of positive valued multiplicative functions.

To be precise we say that the real-valued f has a limiting distribution Fy
if the frequencies

Fro(y)=a""! Z 1

n<az
f(n)<y

converge to a limiting distribution Fy in the usual probabilistic sense. We call
the distribution Fy degenerate if Fy(y) =0 for y < 0 and Fy(y) =1 for y > 0,
and nondegenerate otherwise.

On the other hand, following Erdds, we say that the values of a function
[N = (0,00) are uniformly distributed in (0, 00) (briefly, f is u.d. in (0, c0))
if f(n) tends to infinity as n — oo and if there exists a positive ¢ such that as
Y — 00

Ny, f) = Z l~cy as y— oo.
f(nT;Sy

With these notations Indlekofer proved the following three results.
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Proposition 1.2. (See [9], Theorem 1.) Let the real-valued multiplicative func-
tion f € L*. Then

(i) f possesses a limiting distribution Fy if and only if the mean-value M (| f1)
exists (and has the wvalue fjﬁ: ly|dFs(y) then) , and

(ii) this limiting distribution is degenerate if and only if M(|f|) = 0.

Proposition 1.3. (See [9], Theorem 2.) Let f : N — R be multiplicative and
uniformly summable. Then the existence of M(|f|) implies the existence of

M(f).

Proposition 1.4. (See [9], Theorem 4.) Let f be multiplicative and > 0. Then
the following assertions are equivalent.

(i) 1/f € L* and [ possesses a non-degenerate limiting distribution.

(ii) («) f-id s uniformly distributed in (0, c0).
(B) There exists a constant K > 0 such that

S 1> for all x>0.
r5<x

(v) For all positive =

> 1/f(n) <.

n<x

Let us come back to the investigations of > f(n) for multiplicative func-
n<x

tions |f| < 1. Indlekofer, Kétai and Wagner [12] used the methods of [11] to

compare ». f(n) with > g(n) where g > 0 is multiplicative and |f] < g.

n<x n<x

They showed

Proposition 1.5. (See [12], Theorem.) Let g be a multiplicative function which
assumes real nonnegative values only. Let

1
Z —ngg(p) ~Tlogx, x— o0,
p<z

hold with a constant T > 0. Furthermore, let g(p) = O(1) for all primes p, and

let
> pFepb) < oo

p,k>2
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Besides this, if T < 1, then let

> 9" =0 (x(loga)™").

pr<zk>2

Let [ be a complez-valued function, which satisfies |f(n)| < g(n) for every
positive integer n. If there exists a real number ag such that the series

(1.3) Zp—l — Ref(p)p™"™*)

converges for a = ag, then

Z‘f 1+za 1;[( +me(1+mo)> <1+m2_:1g§fm)> X

n<x m=1

x> gn)+o (D g

n<x n<x
as x — oco. If the series (1.3) diverges for all a € R, then

Zf(n)zo Zg(n) , T — 0.

n<x n<x

In both cases, there are constants c,ao and a slowly oscillating function L with
|L(u)| =1 such that, as © — o,

Z f(n) = (cxm“i(logaﬂ) + 0(1)) Z g(n).

n<z n<z

As an example let us consider the generalized divisor function d,, for x > 0.
Here the multiplicative function d,; is defined by

Z dp(n)n™* = ("(s).

It is well known that

Zd )~ cex(logz)™! asx — oo.

n<z

Obviously, g = d,; fulfills all conditions of Proposition 1.5. Thus we have
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Corollary 1.1. Let f : N — C be multiplicative such that |f| < d.(k > 0).
Then, if there exists a real number ag such that the series

(1.4) > p (k= Ref(p)p™)

converges for a = ag, then

IOE ( ) mumg)) (1-3) X duto

n<x p<z m=1

> de(n)

n<z

as © — 00. If the series (1.4) diverges for all a € R, then

Zf(n):o Zd,{(n) , T — Q.

n<z n<z

In both cases, there are constants c,ao and a slowly oscillating function L with
|L(u)| =1 such that, as x — oo,

Z fln) = (ca:i“‘)fl(log x) + 0(1)) Z de(n).

n<x n<lx

Remark 1.1. In a recent paper Granville et.al. [6] gave upper estimates for
Y <y f(n) where f: N — C is multiplicative and |f| < d,..

2. Multiplicative function on additive arithmetical semigroups

Let (G, 0) be an additive arithmetical semigroup that is, by definition, G is
a free abelian semigroup with identity element 1 such that G has a countable
free generating set P of "primes” and 9 : G — NU {0} is a "degree mapping”
satisfying

(i) 9(ab) = d(a)+ O(b) for all a,b € G,

(ii) the total number G(n) of elements of degree n in G is finite for each
n > 0.
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In particular, if we assume G(n) < ¢"n? with some p and ¢ > 1 then
Zm)fP(m)

is the zeta function associated with G, where P(m) denotes the total number
of primes of degree m in G. (See for details Knopfmacher [15], Knopfmacher

and Zhang [16]).

Obviously
log H (1—2zm)~Pm = Z P(m) Zj_lzjm =
m=1 m=1 j=1
N m_ N A L,
= ZEZdP(d)Z = Z 2
m=1 d|m m=1
where -
A(m) => " dP(d).
d|

1

Then, since P(d) < G(d) < ¢%d?,
mP(m) +0 [ mG(T) Y
2 T

r<m

A(m) =
mP(m) + O (mq%(%)glogm) )

¢ ™A(m) and y(n) = ¢ "G(n) leads to

Putting y = ¢z, A(m)
7 71700 n _ OO)\(m)m
Z0)=2a ") =D vy =exp | Y ==y |
n=0 m=1

Observe \
% = q*m Z 14+0 <q7m/2mglogm>
peEP
d(p)=m

Let f: G — C be a multiplicative function on G, i.e. f(l) =1 and
f(ab) = f(a)f(b) for all coprime a,b € G.

f):=¢" > fla).

acG
8(a)=n

Put
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Then the generating function of f is given by

oo

F) = Y Jy = Y Fa)g 2y =
n=0

acG

= 11 <1+ 3 f<pk>qk8<p>yk8<p>> -

p k=1

= exp (i )VT(rLTTl)ym> .

m=1

This holds at least in a formal sense since f(0) = 1 (# 0). It is also valid
for complex values y, |y| < 1 in terms of ordinary convergence if, for example,
the function f is multiplicative of modulus < 1. Then |A;(m)| < A(m) and
[f(n)] <~(n) for all m,n € N.

Furthermore, here we consider additive arithmetical semigroups satisfying

(21)  Z(z2)=) Gn):" = (i(z)é = exp (Z AS;”)qszI)

m=1

where § is a positive number, and we assume that 0 < A\(m) < 1, H(z) = O(1)
for |z| < ¢! and
lim H(z)=A> 0.
2/ g7t
It is well known [14] that under these conditions

néfl

¢ "G ~ AL

as n — oQ.

Example 2.1. Let F,[X] denote the polynomial ring in an indeterminate X
over the finite Galois field F, with ¢ elements (¢ prime power). The subset
G4 = G(g, X)) consisting of all monic polynomials in F,[X] forms a semigroup
under multiplication. In particular, G, together with the usual degree mapping
on polynomials defines an additive arithmetical semigroup such that

Gy(n)=¢" (n=0,1,2,...).

The generating function Z, of G, is given by ( |z| < ¢~)

(2.2) Zy(2) = ZGq(n)z” =1 —1qz = exp (Z qT:zm> .

m=1
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For more general investigations Indlekofer [13] introduced the class F of
exp-log functions. For this let

(2.3) Z”y = exp (Z )\E;n)ym>

m=1

be holomorphic for |y| < 1 where

(2.4) 0<A(m) =O(1), meN,
and
(2.5) Z(y)| < Z(ly)) \ (<)

for some € > 0. Further, putting

B =esp | 32 2]

m<n

we assume that

(2.6) ny(n) < B(n)
and
(2.7) B(m) =0(B(n)) if m=o0(n), n— oo.

Then we say that the function Z given in (2.3) belongs to te exp-log class F in
case (2.4),(2.5),(2.6) and (2.7) hold.

Example 2.2. The generating functions Z(y) = Z(¢~'2) (see (2.1)) of additive
arithmetical semigroups belong to the class F. Observe that, for r =1 — %,

)

B(n) = exp Z% = exp Z%rm

m<n m<n

Z(r)y=(1—-r)"%=nd,

)

which implies m)
Blm) _ Mys — 0 if m=o(n
By = (3 =0(1) if m=on)

As a further example we mention (see [13], Example 4)

Z(y)zexp<2 A, )

m=1
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where
0<ecp <A(m) <ecx<oo (meN).

Then, obviously

[Z(y)| = Z(|ly|)exp (Z %m)|y|m(cos(mt) - 1)) <
< Z(lyl) exp <01 > %(cos(mt) - 1)) -
— 2|2

and

%((ZL)) =exp | — Z @ < exp (01 log %) =o(1)
m<l<n

if m = o(n)(n — o). Elementary estimates immediately yield
ny(n) = B(n),

where the constants involved in < only depend on ¢; and ¢y (see Manstavicius
[17], Lemma 3.1).

Now, if the function

(2.8) Fy) =) f(n)y" =exp (Z /\’;:n)ym>
n=0

m=1
(ly| < 1) is given then the following result holds.
Theorem 2.1. Let Z be an element of the exp-log class F and let F(y) in

(2.8) satisfy [Af(m)| < A(m) for all m € N. Then the following two assertions
hold

(i) Let
(2.9) i A(m) — ReXg(m)e'™e

converge for some a € R. Put

A, :=exp | —ina + Z As(m)e —Am)

m
m<n

Then
F(n) = Ay(n) + o(7(n)) as n — .
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(i) Let (2.9) diverge for all a € R. Then
f(n) =o0(y(n)) as n— .
We apply Theorem 2.1 to multiplicative functions on G, where G is the

additive arithmetical semigroup of monic polynomials over the Galois field with
q elements.

Define the generalized divisor function dj on G, by

- N 1
du()z" = (Zyl)) = —— =
nzz:o ! (1—q2)"
© qu’m .
= exp Z—z >,
(m—l m
where d,.(n) = > d.(a). Obviously
acy
8(a)=n

G de(n) = (Ii-l—ﬂ—l ) N

n
nn—l
()
Corollary 2.1. Let k > 0. Let f : G, — C be multiplicative such that
[Af(m)| < & for all m € N. Then the following two assertions hold.

(i) Let

. Kk — Relf(m)e™
(2.10) > TJ;

asn — o00.

m=1

converge for some a € R. Put

) ReX¢(m)e™ — i
A, = —
n exp ma + Z m
m<n
Then )
. —n r . nn— rk—1
f)i=a™ 32 (@) = Angs o).
aEGy
d(a)=n

(ii) Let (2.10) diverge for all a € R. Then
f(n) =o(n" 1) as n— occ.

Remark 2.1. In a recent paper Granville et. al. [5] investigated upper
estimates for ¢~ >~ f(a) where |\f(m)| < & for all m € N.

a€lyq
a(a)=n
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