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Abstract. A discussion involving the evaluation of the sum

∑
T<γ�T+H

|ζ( 1
2
+ iγ)|2

and some related integrals is presented, where γ (> 0) denotes imagi-
nary parts of complex zeros of the Riemann zeta-function ζ(s). It is
shown unconditionally that the above sum is � H log2 T log log T for
T 2/3 log4 T � H � T .

1. Introduction and statement of results

Let γ (> 0) denote ordinates of complex zeros of the Riemann zeta-function
ζ(s). Consider

(1.1) F (T,H) :=
∑

T<γ�T+H

|ζ( 12 + iγ)|2 (1 � H = H(T ) � T ),

so that the interval [T, T +H] may be called “short” if H = o(T ) as T → ∞.

Key words and phrases: Riemann zeta-function, discrete mean square estimates, short inter-
vals.
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A more general sum than the one in (1.1), whenH = T , was treated by S.M.
Gonek [1]. He proved, under the Riemann hypothesis (RH, that all complex
zeros ρ = β + iγ of ζ(s) satisfy β = 1

2 ) that

∑
0<γ�T

∣∣∣∣ζ
(
1

2
+ i

(
γ +

α

L

))∣∣∣∣
2

=

(
1−

(
sinπα

πα

)2
)

T

2π
log2 T +O(T log T )

holds uniformly for |α| � 1
2L, where L = 1

2π log( T
2π ). It would be interesting

to recover this result unconditionally, but our method of proof does not seem
capable of achieving this.

If the RH holds, then F (T,H) ≡ 0 for H > 0, and there is nothing more
to say. However, the RH is not known yet to hold, so that one may ask:
what if RH fails, but F (T,H) = 0 ? It follows that there exists a zeta zero
β+ iγ (T < γ � T +H) such that β �= 1

2 . If for such a zero one has 1
2 < β < 1,

then 1−β+ iγ is also a zero, which follows from ζ(s) = ζ(s̄) and the functional
equation

ζ(s) = χ(s)ζ(1− s), χ(s) :=
Γ( 12 (1− s))

Γ( 12s)
πs−1/2 (∀s ∈ C).

Therefore one may consider only the case when 1
2 < β < 1 and define, for a

given γ (> 0),

(1.2) A(γ) :=
∑

1
2<β<1

ζ(β+iγ)=ζ( 1
2+iγ)=0

1,

where the multiplicities of the zeros ζ(β + iγ) are counted. It is clear that

(1.3) 0 � A(γ) � N(γ + 1
2 )−N(γ − 1

2 ) � log γ.

It is reasonable to expect that A(γ) = 0 for almost all γ, but this is not easy
to prove.

As is customary, the function

N(T ) =
∑

0<γ�T

1

counts, with multiplicities, the number of zeta zeros, whose positive imaginary
parts do not exceed T . We have (see Chapter 1 of [1] or Chapter 9 of [11])

N(T ) =
∑

0<γ�T

1 =
1

π
ϑ(T ) + 1 + S(T ),

ϑ(T ) = Im
{
log Γ( 14 + 1

2 iT )
}
− 1

2T log π,

(1.4)
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whence ϑ(T ) is real and continuously differentiable. In fact, by using Stirling’s
formula for the gamma-function, it is found that

ϑ(T ) =
T

2
log

T

2π
− T

2
− π

8
+O

(
1

T

)
, ϑ′(T ) =

1

2
log

T

2π
+O

( 1

T 2

)
.

Moreover,

(1.5) S(T ) =
1

π
arg ζ( 12 + iT ) = 1

π Im
{
log ζ( 12 + iT )

}
� log T.

Thus (1.3) follows from (1.4) and (1.5). Here for T �= γ the argument of
ζ( 12 + iT ) is obtained by continuous variation along the straight lines joining
the points 2, 2 + iT , 1

2 + iT , starting with the value 0. If T is an ordinate
of a zeta-zero, then we define S(T ) = S(T + 0). Clearly when T �= γ we can
differentiate S(T ) by using (1.5). If T = γ, then by (1.4) it is seen that S(T )
has a jump discontinuity which counts the number of zeros ρ with γ = Imρ = T .
For a comprehensive account on ζ(s), the reader is referred to the monographs
of E.C. Titchmarsh [11] and the author [1].

There are some results for F (T, T ), defined by (1.1). The author [2] proved
that unconditionally

(1.6) F (T, T ) =
∑

T<γ�2T

|ζ( 12 + iγ)|2 �ε T log2 T (log log T )3/2+ε,

where ε denotes arbitrarily small positive numbers, not necessarily the same
ones at each occurrence, and �ε means that the implied �-constant depends
only on ε. K. Ramachandra [9] used a different method to obtain a result
which easily implies that the right-hand side of (1.6) is unconditionally �
T log2 T log log T . The same bound was obtained by the author [3], by another
method. It was also used to obtain several other results, among which are the
bounds

∫ T

0

|ζ( 12 + it)|2S(t) dt � T log T log log T,

∫ T

0

|ζ( 12 + it)|2S2(t) dt � T log T (log log T )2,

(1.7)

while under the Riemann Hypothesis one has

(1.8)

∫ T

0

|ζ( 12 + it)|2S(t) dt � T log T.

By a variant of the method used in ]3] one can generalize these results to
short intervals and obtain the following unconditional results.
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Theorem 1. If BT 2/3 log4 T � H = H(T ) � T for a suitable B > 0, then
we have

(1.9) F (T,H) =
∑

T<γ�T+H

|ζ( 12 + iγ)|2 � H(log T )2 log log T.

Theorem 2. If BT 2/3 log4 T � H = H(T ) � T for a suitable B > 0, then
we have

∫ T+H

T

|ζ( 12 + it)|2S(t) dt � H log T log log T,

∫ T+H

T

|ζ( 12 + it)|2S2(t) dt � H log T (log log T )2.

(1.10)

2. The necessary lemmas

If one defines

(2.1) R(t) := S(t) +
1

π

∑
p�y

p−1/2 sin(t log p) (T � t � 2T ),

where p denotes primes, y = T δ, and δ > 0 is a small positive number, then it
is a classical result of A. Selberg [10] that R(t) is small on the average. This
was also later elaborated by K.-M. Tsang [12]. What is needed here is

Lemma 1. Let m > 1 be an integer, 1 < m � (log x)/192, x1/(4m) < y � x1/m

and log T � log x � log T . Then we have, for T � T0(ε),

(2.2)

∫ T+H

T

R2m(t) dt < (e37π−2ε−3m2)
m
H (H = T 27/82+ε).

This is Lemma 7 of the paper of A.A. Karatsuba and M.A. Korolev [6]. Its
good features are that (2.2) is quite explicit, and moreover the range of H is
wide.

Lemma 2. Let BT 2/3 log4 T � H � T for a suitable B > 0. Then
∫ T+H

T

|ζ( 12 + it)|4 dt � H log4 T,

∫ T+H

T

|ζ ′( 12 + it)|4 dt � H log8 T.

(2.3)



A. Ivić 301

The first bound in (2.3) follows from the asymptotic formula

(2.4)

∫ T

0

|ζ( 12 + it)|4 dt = TP4(log T ) +O(T 2/3 logC T ),

where P4(x) is a well-defined polynomial of degree four in x, with leading coef-
ficient 1/(2π2). The proof of (2.4), with C = 53/6, was given by Y. Motohashi
and the author [5]. The value C = 8 was given later by Y. Motohashi [8]. The
second bound in (2.3) follows from (4.1), (4.2) and (4.9) of the author’s paper
[4] and the first bound in (2.3). It is clearly the range for H in Lemma 2 which
sets the limit to the range for H in Theorem 1 and Theorem 2.

Lemma 3. Let A(s) =
∑

m�M

a(m)m−s, a(m) �ε m
ε. Then

(2.5)

∫ T

0

|ζ( 12 + it)A( 12 + it)|2 dt =

= T
∑

k,��M

a(k)a(�)

[k, �]

(
log

T (k, �)2

2πk�
+ 2C0 − 1

)
+ E(T,A),

where C0 = −Γ′(1) is Euler’s constant, and E(T,A) �ε T
1/3+εM4/3.

This is a version of the mean value theorem for a Dirichlet polynomial
weighted by |ζ( 12 + it)|, and (2.5) is due to Y. Motohashi [7]. As usual, (k, �)
is the greatest common divisor of k and �, and [k, �] is their least common
multiple.

3. Proof of Theorem 1

Let henceforth BT 2/3 log4 T � H � T , and let f(t) be a smooth function
on [T, T +H]. Then in view of (1.4) one has

∑
T<γ�T+H

f(γ) =

∫ T+H

T

f(t) dN(t) =

=

∫ T+H

T

f(t)
1

2π
log

( t

2π

)
dt+

∫ T+H

T

f(t) d
(
S(t) +O

(1
t

))
= I1 + I2,

(3.1)

say. The integral I1 is usually not difficult to evaluate, and so is the integral
with O(1/t), which is a continuously differentiable function. The main problem
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is the evaluation of the integral in (3.1) with S(t), which we write as

(3.2) I2 =

∫ T+H

T

f(t) dR(t)−
∫ T+H

T

f(t)
1

π

∑
p�T δ

p−1/2 log p · cos(t log p) dt,

where (2.1) was used (δ > 0 is sufficiently small). In the case of

f(t) ≡ |ζ( 12 + it)|2,

which is needed for Theorem 1, we easily see that

(3.3) I1 � H(log T )2,

since
∫ T+H

T
|ζ( 12 + it)|2 dt � H log T for T 1/3 � H � T (see e.g., Chapter 15

of [1]). To deal with I2, let

A(T,H;V ) :=
{
t : (T � t � T +H) ∧ (|R(t)| � V )

}
,

where we suppose that V = V (t) � 0 and lim
T→∞

V (T ) = +∞. If µ(·) denotes

measure, then by Lemma 1 we obtain

µ
(
A(T,H;V )

)
=

∫

A(T,H;V )

1 dt � V −2m

∫ T+H

T

R2m(t) dt �

�
(
Cε−3

(m
V

)2
)m

H,

where C,Cj , . . . denote positive, absolute constants. If m = [AV ] for a suffi-
ciently small constant A > 0, then

(
Cε−3

(m
V

)2
)m

�
(
Cε−3A2

)[AV ]

�

� exp

(
−[AV ] log

ε3

CA2

)
�

� exp

(
−(AV − 1) log

ε3

CA2

)
� C1e

−C2V

for suitable C1, C2. If we choose

(3.4) V =
100

C2
log log T (T � T0 > 0),

then we see that

(3.5) µ
(
A(T,H;V )

)
� He−C2V = H(log T )−100.
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Now we use (3.1) and (3.2) with f(t) ≡ |ζ( 12 + it)|2 = ζ( 12 + it)ζ( 12 − it). This
is needed since integration by parts yields

(3.6)

∫ T+H

T

f(t) dR(t) = O(T 1/3+δ)−

−
∫ T+H

T

R(t)
(
ζ ′( 12 + it)ζ( 12 − it)− iζ( 12 + it)ζ ′( 12 − it)

)
dt.

Here we used the classical bound ζ( 12 + it) � |t|1/6 (e.g, see Chapter 7 of [1]).
Consider now the portion of the integral on the right-hand side of (3.6) for which
|R(t)| � V , where V is given by (3.4). By Hölder’s inequality for integrals, this
integral does not exceed

(3.7)

{
µ
(
A(T,H;V )

)
×

×
∫ T+H

T

|ζ( 12 + it)|4 dt
∫ T+H

T

|ζ ′( 12 + it)|4 dt
∫ T+H

T

R4(t) dt

}1/4

� H,

on using (2.2) of Lemma 1 (with m = 2), (2.3) of Lemma 2 and (3.5). The
portion of the integral over [T, T +H] \A(T,H;V ) is

� log log T

∫ T+H

T

|ζ( 12 + it)||ζ ′( 12 + it)| dt �

� log log T

{∫ T+H

T

|ζ( 12 + it)|2 dt
∫ T+H

T

|ζ ′( 12 + it)|2 dt

}1/2

�

� log log T
(
H log T ·H log3 T

)1/2

= H(log T )2 log log T.

The bounds for the mean square of ζ, ζ ′ in short intervals follow similarly,
but with less difficulty, as the bound for the corresponding fourth moments in
Lemma 2 (see e.g., Chapter 15 of [1]). It is also easily seen that (3.3) holds in
our case. Thus it remains to estimate the second integral in (3.2), namely

(3.8) I3 :=
1

π

∫ T+H

T

|ζ( 12 + it)|2
∑
p�T δ

p−1/2 log p · cos(t log p) dt.

The integral in (3.8), by the Cauchy-Schwarz inequality, does not exceed

(3.9)

{∫ T+H

T

|ζ( 12 + it)|2 dt×

×
∫ T+H

T

|ζ( 12 + it)|2
∣∣∣
∑
p�T δ

p−1/2−it log p
∣∣∣
2

dt




1/2

.
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As remarked above, the first integral in (3.9) is � H log T , and for the second
one we apply (2.5) of Lemma 3, once with T +H and once with T , and we sub-
tract the results. In our interval forH we shall have E(T+H,A)−E(T,A) � H
for M = T δ and sufficiently small δ > 0, where

A(s) :=
∑
p�T δ

log p · p−1/2−it.

Further

∑
p1,p2�M

log p1 log p2
[p1, p2]

(
log

(T (p1, p2)2
2πp1p2

)
+ 2C0 − 1

)
=

=
∑
p�M

log2 p

p

(
log

T

2π
+ 2C0 − 1

)
+

+
∑

p1,p2�M
p1 �=p2

log p1 log p2
p1p2

(
log

( T

2πp1p2

)
+ 2C0 − 1

)
.

(3.10)

The last expression is � log T · log2 M � log3 T , if one uses the elementary
bound ∑

p�x

log p

p
� log x.

Therefore the expression in (3.8) is � H log2 T , which finishes the proof of
Theorem 1. �

4. Proof of Theorem 2

The proof of Theorem 2 is based on the same ideas as the proof of Theorem
1, so only its salient points will be mentioned. To prove the first bound in (1.10)
we use (2.1). The integral with R(t), similarly as in the proof of Theorem 1,
will be � H log T log log T . Let

∑
(T ) :=

∑
p�T δ

p−1/2 sin(t log p).

The contribution of
∑

(T ) for which |
∑

(T )| � log log T is trivially

� H log T log log T.
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The remaining contribution is bounded by

(4.1)
1

log log T

∫ T+H

T

|ζ( 12 + it)|2
∣∣∣
∑
p�T δ

p−1/2−it
∣∣∣
2

dt.

The integral in (4.1) is estimated by Lemma 3, with the preceding A(s) replaced
by

A1(s) :=
∑
p�T δ

p−1/2−it.

This leads to an expression similar to the one in (3.10), namely

∑
p1,p2�M

1

[p1, p2]

(
log

(T (p1, p2)2
2πp1p2

)
+ 2C0 − 1

)
=

=
∑
p�M

1

p

(
log

T

2π
+ 2C0 − 1

)
+

+
∑

p1,p2�M
p1 �=p2

1

p1p2

(
log

( T

2πp1p2

)
+ 2C0 − 1

)
� log T (log log T )2,

(4.2)

since
∑
p�x

1

p
= log log x + O(1).

The bound in (4.2), combined with (4.1) leads then to

∫ T+H

T

|ζ( 12 + it)|2S(t) dt � H log T log log T.

To prove the remaining bound in (1.10) we use S2(t) � R2(t) +
∑2

(t). The
integral with R2(t) is

(4.3) � H log T (log log T )2,

if we consider separately the cases |R(t)| � V and |R(t)| � V , where V is as

in (3.4). The integral with
∑2

(t) is estimated as the integral in (4.1). With
the aid of (4.2) we arrive again at the bound in (4.3), thereby completing the
proof. �
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[4] Ivić, A., Sums of squares of |ζ(12 + it)| over short intervals, Max-Planck-
Institut für Mathematik, Preprint Series 2002 (52), pp. 12. (also in “Bonner
Math. Schriften” Nr. 360 (eds. D.R. Heath-Brown and B.Z. Moroz), Proc.
Session in analytic number theory and Diophantine equations, pp. 17).
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Serbian Academy of Sciences and Arts
Knez Mihailova 35, 11000 Beograd
Serbia
aivic 2000@yahoo.com

aleksandar.ivic@rgf.bg.ac.rs


