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Abstract. The n-dimensional hyperoctahedral group, denoted by Tn, is
the group of the distance-preserving transforms of the n-dimensional cube.
In this group, a norm and a deviation of an element can be defined as the
maximum and minimum of the distances of each vertex and its transformed
one. In previous papers the author proved results on the computation
of these values and characterized the image of the norm and deviation
functions. In the present paper we deal with the following problem: which
ordered pair (p, q) belongs to a transform u so that the norm and the
deviation of u is equal to p and q, respectively.

1. Introduction

Considering two Boolean functions of the same variables, they are not es-
sentially different if they differ only in the ordering of the variables and in as-
signing the 0 and 1 to the variables that is in the case when f2 (x0, . . . , xn−1) =

= f1

(
xα0

π(0), . . . , x
αn−1

π(n−1)

)
where π is a permutation of the indices of the vari-

ables, αi ∈ {0, 1} and xα = α ⊕ x =

{
x , if α = 0
x , if α = 1

. This fact explains

why the hyperoctahedral group is so important when we investigate Boolean
functions. And if it is so, then it is understandable that it is important to know
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what is the maximal and the minimal impact of an element of the group on the
Boolean functions. In other articles, in [2] and [3] we examined the maximal
and the minimal effects of the transforms, and stated that these effects depend
only on the transform given, and that every possible value can be achieved as
the norm and as the deviation by a transform choosen in an appropriate way.
Let Bn denote the set of the n-dimensional Boolean vectors. Bn is a metric
space with the Hamming-distance, that is, with d

(
x, y

)
=

∑n−1
i=0 (xi ⊕ yi) [1]

where x ∈ Bn, y ∈ Bn, xi and yi are the i-th coordinates of x and y, respec-
tively, and ⊕ denotes the modulo 2 sum. Bn is a representation of the abstract
notion of the n-dimensional cubes. Indeed, the cardinality of Bn is equal to
2n and this is the number of the vertices of an n-dimensional cube, too. Two
vertices of the n-dimensional cube are neighbouring if and only if they are con-
nected by an edge of the cube. We can define a similar relation, the relation
of neighbourhood, between the elements of the n-dimensional Boolean vectors
as follows. Let two Boolean vectors be neighbouring if and only if they differ
from each other in exactly one component, that is, if and only if the Hamming-
distance of the two Boolean vectors is 1. A vertex of an n-dimensional cube has
n neighbouring vertices, and this is the number of the Boolean vectors having
a Hamming-distance of 1 from a fixed Boolean vector. If we define the distance
of two vertices of an n-dimensional cube as the minimum of the number of the
edges we have to pass for reaching one of the two vertices from the other vertex,
then it is easy to see that this value is really a distance. Now there is a one-to-
one mapping preserving the distances between the vertices of the n-dimensional
cube and the corresponding vectors of the n-dimensional Boolean space – more
precisely there are 2nn! correspondences having the before-mentioned proper-
ties. Indeed, let’s fix an arbitrary vertex of the n-dimensional cube, denoted
by v0. We can correspond to this vertex any of the 2n Boolean vectors. These
are 2n possibilities. After fixing one of these vectors, v0 and this vector have
n neighbouring vertices and neighbouring vectors of the same number, respec-
tively. There are altogether n! one-to-one mappings between the two sets each
of them consisting of n elements. This choice and the previous one give alto-
gether 2nn! different one-to-one correspondences between n+1 elements of the
corresponding sets. So far we have given the image of an arbitrarily choosen
vertex of the cube and the images of the vertices neighbouring to the previously
mentioned vertex. Let’s denote this mapping by ϕ and by A the set of these n+1
vertices. Then it can be proved that there is exactly one such extension ψ of ϕ
that d (ψ (v′) , ϕ (v)) = d̃ (v′, v) for all of the pairs of the vertices v′ of the cube
and v ∈ A (see for instance in [1]). From the previously mentioned facts follows
that we can study the effects of the n-dimensional hyperoctahedral group on
Bn. Let Tn denote the group of the congruences of the n-dimensional cube
acting on Bn. In this case Tn = {(π, α) |π ∈ Sn and α ∈ {0, 1}n }, where Sn is
the symmetrical group of degree n acting on the set of nonnegative integers less
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than n. If x = (x0, . . . xn−1) ∈ Bn, u = (π, α) ∈ Tn and α = (α0, . . . , αn−1),

then xu =
(
xα0

π(0), . . . , x
αn−1

π(n−1)

)
so that xα = α ⊕ x. The elements of Tn and

only these elements among all of the transforms of Bn preserve the distances
between the elements of Bn, so this group is the isometric group of Bn. Tn

is the wreath product of S2 and Sn, that is, Tn = S2 � Sn, where Sn is the
symmetric group of degree n ([7], [8], [9], [10]). In [2] and [3] we dealt with an
inner characterization of the metrics, the norm and the deviation of the hyper-
octahedral group. In the following section we shortly summarize the results of
those articles.

2. Basic definitions and prior results

Definition 2.1. Let n ∈ N, u ∈ Tn, v ∈ Tn. Then d (u, v) = max
x∈Bn

{d (xu, xv)}.

d defines a metrics on Tn (see for instance in [10]).

d is left and right invariant on Tn, that is, for any u ∈ Tn, v ∈ Tn and
w ∈ Tn,

(2.1) d (uw, vw) = d (u, v)

and

(2.2) d (wu,wv) = d (u, v) .

d can be determined in an inner manner. Let w = (π, α) ∈ Tn be an
arbitrary element, let

(2.3) π =

s−1∏
t=0

ct

be the disjoint cycle decomposition of the permutation π. Further, let ck =
= (ck0

, . . . , ckmk−1
) be the k-th member of the product in (2.3), where 0 ≤ k <

< s, mk is the length of the k-th cycle of the previous product for 0 ≤ k < s, and

α = (α0, . . . , αn−1) ∈ {0, 1}n, furthermore let tk =
(
mk +

∑mk−1
i=0 αcki

)
mod2

and τ (w) =
∑s−1

k=0 tk.

The following theorem can be seen in [2].
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Theorem 2.1. Let u and v be two arbitrary elements from Tn. Then d (u, v) =
= n− τ

(
uv−1

)
.

Using the metrics studied above, one can define the norm of the elements
of Tn [2].

Definition 2.2. Let Tn be the isometric group of the n-dimensional Boolean
space. Then ‖u‖ = d (e, u) is the norm of u ∈ Tn.

From the definition immediately follows that

1. ‖u‖ = 0 if and only if u = e,

2. ‖u‖ =
∥∥u−1

∥∥ for every u ∈ Tn,

3. d (u, v) =
∥∥uv−1

∥∥ for every (u, v) ∈ T 2
n .

Theorem 2.2. Let ϕ : u �→ ‖u‖. Then Im (ϕ) = Nn = {k ∈ N |k < n} .

In Theorem 2.2 (see in [2]) N denotes the set of the non-negative integers.

In the previous part of this section we characterized an element of the
hyper-octahedral group by its maximal effect regarded as the distance between
a vector of the Boolean space and its transformed image. But sometimes the
expectation is the opposite, that is, we wish that the effect of the transformation
be as little as possible. This expectation leads to the following notion [3].

Definition 2.3. Let Tn be the isometric group of the n-dimensional Boolean
space and let u ∈ Tn. Then 〈〈u〉〉 = min

x∈Bn

{d (x, xu)}.

〈〈u〉〉 shows the minimal effect of u ∈ Tn. By the definition it seems, that
〈〈u〉〉 depends not only on u, but on the elements of the Boolean space. How-
ever, the next statement proves that 〈〈u〉〉 can be given in a form depending
only on u [3].

Theorem 2.3. Let u = (π, α) ∈ Tn, where π ∈ Sn and α ∈ {0, 1}n. If π =

=
∏s−1

t=0 ct is the disjoint cycle decomposition of the permutation π, for 0 ≤ k <

< s, ck =
(
ck0 , . . . , ckmk−1

)
is the k-th member of the previous product, then

(2.4) 〈〈u〉〉 =
s−1∑
k=0

t
′

k,

where t
′

k denotes the remainder of
∑mk−1

i=0 αcki
by modulo 2.



Norm and deviation 289

We would like to highlight the idea of the proof.

For the sake of simplicity let us suppose that π in u = (π, α) ∈ Tn is
a cycle, for instance the cycle of the first k elements of the indices, that is,
π = (0, 1, . . . , k − 1), where n > k ∈ N, and for n > i ≥ k, i ∈ N, αi = 0. In
this case for an arbitrary element x of Bn,(

x
xu

)
=

(
x0 x1 . . . xk−2 xk−1 xk . . . xn−1

xα0
1 xα1

2 x
αk−2

k−1 x
αk−1

0 xk . . . xn−1

)
.

Now the number of the positions where the original and the transformed vectors
differ from each other can be calculated as follows. If n > i ≥ k, i ∈ N, then
xi = xαi

π(i) = (xu)i, so in that part of the vector there is no position where

the two vectors differ, the number of the different positions of that domain is
equal to 0. Now let us consider the first part of the vectors, that is, the first k
positions. We try to get as few different positions as possible. The best result
is, if xi = xαi

π(i) = xαi

(i+1) mod k for every k > i ∈ N. Then

x0 = xα0
1

x0 = xα0
1 = (xα1

2 )
α0 = xα1⊕α0

2
...

...
...

...
...

...
...

x0 = x
αk−3⊕···⊕α0

k−2 =
(
x
αk−2

k−1

)αk−3⊕···⊕α0
= x

αk−2⊕αk−3⊕···⊕α0

k−1

and finally

x0 = x
αk−2⊕αk−3⊕···⊕α0

k−1 =
(
x
αk−1

0

)αk−2⊕···⊕α0
= x

αk−1⊕αk−2⊕···⊕α0

0

(⊕ denotes the modulo 2 sum).

All but the last conditions can be easily satisfied. As ab = a⊕ b, so

x0 = x
αk−1⊕αk−2⊕···⊕α0

0

= x0 ⊕ αk−1 ⊕ αk−2 ⊕ · · · ⊕ α0.

This last equality is true if and only if αk−1 ⊕ αk−2 ⊕ · · · ⊕ α0 = 0, that is, if
and only if αk−1 + αk−2 + · · · + α0 is an even number. In this case the two
vectors are identical, there are no differences, the distance of the two vectors
is equal to 0. In the other case, that is, if the sum of the exponents is an odd
number, then there is exactly one position where the two vectors differ, so the
distance of the two vectors, and then 〈〈u〉〉 is equal to 1. That means that the
minimal number of differences, in another words, the minimal deviation caused
by this transform is either 0 or 1, depending on the parity of the sum of the
exponents.

The range of the values of the function u �→ 〈〈u〉〉, where u ∈ Tn, is as
follows [3].

Theorem 2.4. The set of the values of the function u �→ 〈〈u〉〉, defined on Tn,
is equal to A = {k ∈ N |k ≤ n}.
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3. Simultaneous characterization of norm and deviation

Let n be a non-negative integer and let Nn denote the non-negative in-
tegers less than n, that is, let Nn = {k ∈ N | k < n}. In [2] and [3] it was
proved and in the previous section it was outlined that for every p ∈ Nn+1 and
q ∈ Nn+1 there exist such u ∈ Tn and v ∈ Tn, such elements in the
n-dimensional hyperoctahedral group that the norm of u is equal to p and
the deviation of v is equal to q. Clearly, the question arises whether there is
any element in the group whose norm and deviation are equal to a pair of given
values within the allowed range, or what conditions have to be fulfilled for a
particular pair. The next statement will show us that the two elements of the
pair cannot be independent from each other.

Theorem 3.1. Let n ∈ N, n ≥ p ∈ N and p ≥ q ∈ N. Then for the pair
of (p, q) there exists such u ∈ Tn that ‖u‖ = p and 〈〈u〉〉 = q if and only if
p ≡ q (mod 2).

Proof. 1. Necessity : let u = [π, α] be an arbitrary distance-preserving map-

ping, let π =
∏s−1

k=0 ck be the decomposition of π into pairwise disjunct cy-
cles, let ck = (ck0

, . . . , ckmk−1
) and α = (α0, . . . , αn−1) ∈ {0, 1}n. Then

p = n −
∑s−1

k=0 pk, q =
∑s−1

k=0 p
′
k , where pk = (mk +

∑mk−1

i=0 αcki
) mod 2

and p′k =
∑mk−1

i=0 αcki
mod 2. Let te,e be the number of the cycles where

both the length of the cycle, mk and the magnitude of the cycle, p′k are
even, let te,o be the number of the cycles of even length and odd magni-
tude, to,e the number of the cycles of odd length and even magnitude, and
finally, let to,o be the number of the cycles of odd length and odd magni-
tude. Now te,o + to,o = q, te,o + to,e = n − p. But to,e + to,o ≡ n (mod 2),
so to,e + to,o ≡ to,e + to,o + 2te,o = (te,o + to,e) + (to,o + to,e) (mod 2), thus
n ≡ q + (n− p) = n+ (q − p) (mod 2), so p ≡ q (mod 2).

2. Sufficiency : let p ≡ q (mod 2) and m = min (q, n− p). As n ≥ p ≥
≥ q ∈ N, so m ≤ min (q, n− q) ≤ n

2 . Let us choose such mapping, that
te,o = m. There are two cases.

a) m = q. Now te,o = q and q = te,o + to,o = q + to,o. From that
equation follows that to,o = 0. Then n − p = te,o + to,e = q + to,e and we
get that to,e = n − p − q. If each of the te,o = q pairwise disjoint even-length
cycles is a transposition, that is a cycle of length of 2, while the length of the
to,e = n − p − q cycles of odd length, pairwise different and disjoint to every
transposition mentioned previously is equal to 1, then the product of all the
elements of those cycles affect 2q+n−p−q = n−p+q ≥ 0 elements altogether.
If we take into consideration that to,o = 0 then the further te,e cycles of even
length contain n − (n − p + q) = p − q elements. As p and q have the same
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parity, p − q is even, and then each of these cycles can be a transposition of
two distinct elements. With the previous data let

π =

q∏
k=1

(2k − 1, 2k)

q+
(p−q)

2∏
k=q+1

(2k − 1, 2k)

and
α = (1, 0, . . . 1, 0︸ ︷︷ ︸

2q

, 0, . . . , 0︸ ︷︷ ︸
p−q

, 0, . . . , 0︸ ︷︷ ︸
n−p−q

).

With this π and α we get that te,e =
p−q
2 , te,o = q, to,e = n−p−q and to,o = 0.

b) m = n − p. Similarly counting as in the previous point, from
q = te,o + to,o = n − p + to,o we get that to,o = q − n + p, and the equa-
tion of n−p = te,o+ to,e = n−p+ to,e is equivalent to to,e = 0. Let each of the
te,o cycles of even length be again a transposition and the length of each of the
to,o = q−n+p cycles of odd length be equal to 1. Then the number of the indices
not involved in the previous cycles is equal to n− (2(n−p)+ q−n+p) = p− q,
like in case a), and we can again arrange these elements into pairwise disjoint
cycles of length of 2. Now with the permutation

π =

n−p∏
k−1

(2k − 1, 2k)

n−p+ p−q
2∏

k=n−p+1

(2k − 1, 2k)

and with the vector

α = (1, 0, . . . , 1, 0︸ ︷︷ ︸
2(n−p)

, 0, . . . , 0︸ ︷︷ ︸
p−q

, 1, . . . , 1︸ ︷︷ ︸
q−n+p

)

we get that te,e =
p−q
2 , te,o = n− p, to,e = 0 and to,o = q − n+ p. �
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Eötvös Loránd University
H-1117 Budapest
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