
Annales Univ. Sci. Budapest., Sect. Comp. 47 (2018) 167–172

AN APPLICATION OF MAHLER’S METHOD

TO CONTINUED FRACTIONS

Peter Bundschuh (Köln, Germany)
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(Received February 19, 2018; accepted March 25, 2018)

Abstract. Using Mahler’s method we prove the transcendence of certain
continued fractions.

1. Introduction and results

The aim of the present note is to study the transcendence of certain con-
tinued fractions and to give so a seemingly new application of the method
developed by Mahler nearly ninety years ago for studying transcendence and
algebraic independence of the values of functions satisfying some functional
equations. An excellent introduction to the method and its later developments
is given in Nishioka’s book [6]. Typical easy examples of so-called Mahler
functions are the series and products

∞∑
j=0

r(zd
j
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∞∏
j=0

r(zd
j

),

where d ≥ 2 is an integer and r(z) a rational function satisfying certain natural
conditions. These functions are solutions of simple Mahler type functional
equations

f(z) = r(z) + f(zd), f(z) = r(z)f(zd),
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respectively. There is a rather extensive list of papers where the transcendence
and algebraic independence of the above type of series and products are studied
by using Mahler’s method, see [6], [1], [3] and the references there. In particular,
note that the generating functions of some interesting sequences are special
cases of the above functions, for example
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) are the generating functions of the Thue-Morse sequence on {−1, 1}
and the Stern diatomic sequence, respectively, the paper [2] gives some algebraic
independence results on these and related functions.

In the present note, we shall study the transcendence of the values of the
(formal) continued fraction

f(z) = [r(zd
0

), r(zd
1

), r(zd
2

), . . .],

where r(z) = p(z)/q(z) is a rational function with coprime polynomials p(z)
and q(z) satisfying p(0) �= 0, q(0) = 0 and deg p(z) ≤ deg q(z) =: k ≥ 1. This
f(z) satisfies a Mahler type functional equation

f(z) =
1

r(z) + f(zd)
=

q(z)

p(z) + q(z)f(zd)

or equivalently

(1.1) f(z)(r(z) + f(zd)) = 1,

which gives a possibility to use Mahler’s method in this context, too.

To state our result we denote q(z) = zmq1(z), q1(0) �= 0, where m is an
integer satisfying 1 ≤ m ≤ k. The definition of f(z) implies that

f(z) = lim
n→∞

[r(zd
0

), r(zd
1

), . . . , r(zd
n−1

)] = lim
n→∞

Pn(z)

Qn(z)
,

where Pn(z) andQn(z) are polynomials with first nonzero terms p(0)n−1q1(0)z
m

and p(0)n, respectively, leading to f(0) = 0. The functional equation (1.1) has
a unique power series solution

f(z) =
∞∑
i=1

ciz
i

with f(0) = 0 and Theorem 1.7.1 of [6] implies that this series has a positive
convergence radius R depending effectively on the coefficients of p(z) and q(z).
Our main result reads as follows.

Theorem 1.1. Assume that the polynomials p(z) and q(z) have algebraic co-
efficients and either m > k/(d + 1) or 1 ≤ m ≤ k/(d + 1) and simultaneously
the polynomial q1(z) does not have any factor zd − γ, γ �= 0 (in C[z]). If α is

an algebraic number satisfying |α| < 1, q(αdj

) �= 0, j = 0, 1, . . . , then f(α) is a
well defined transcendental number.
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The choice r(z) = 1/z in the above theorem gives the following corollary.

Corollary 1.1. If β is an algebraic number satisfying |β| > 1, then

g(β) := [β, βd, βd2

, . . .] is a transcendental number.

Corollary 1.1 applies in particular to all β = q ∈ {2, 3, . . .}, but in this case
the result follows also immediately from Roth’s theorem on the approximation
of algebraic numbers by rationals. Further, we refer to [4] for some linear
independence results on g(q).

Before entering the proof of Theorem 1.1, we point out that a transcen-
dence measure for f(α) could also be obtained by using the work [5] or its
generalization [7].

2. Proof of Theorem 1.1

To apply Mahler’s Theorem (Theorem 1.2 in [6]), we need to know that
f(z) is a transcendental function. By Theorem 1.3 of [6], it is enough to prove
that f(z) is not a rational function.

Lemma 2.1. If the polynomials p(z) and q(z) satisfy the assumptions of The-
orem 1.1 (apart from the algebraicity of their coefficients), then f(z) is not a
rational function.

Proof. Assume that a rational function f(z) = a(z)/b(z) with coprime poly-
nomials a(z) and b(z) satisfies (1.1). Then

(2.1) a(z)(p(z)b(zd) + q(z)a(zd)) = q(z)b(z)b(zd).

Thus necessarily deg a(z) = deg b(z) =: D ≥ 1. Further, since a(z) and b(z) as
well as p(z) and q(z) are coprime, (2.1) implies

(2.2) b(zd) | q(z)a(z), q(z) | a(z)b(zd).

Thus dD ≤ D + k and k ≤ (d+ 1)D, and therefore

(2.3)
k

d+ 1
≤ D ≤ k

d− 1
.

As we saw above, f(0) = 0, hence a(0) = 0. Let us write a(z) = zua1(z),
where a1(0) �= 0. By (2.1), we then have

zua1(z)(p(z)b(z
d) + zm+duq1(z)a1(z

d)) = zmq1(z)b(z)b(z
d).
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Thus u = m and

(2.4) a1(z)(p(z)b(z
d) + z(d+1)mq1(z)a1(z

d)) = q1(z)b(z)b(z
d).

Now a1(z
d) and b(zd) are coprime and therefore

b(zd) | z(d+1)mq1(z)a1(z).

Since b(0) �= 0, this implies

(2.5) b(zd) | q1(z)a1(z).

Assuming now m > k/(d+ 1) and using (2.5), we get

dD ≤ k+D−2m, (d−1)D ≤ k−2m < k− 2k

d+ 1
=

(d− 1)k

d+ 1
, D <

k

d+ 1
,

which is not possible, by (2.3).

In the case 1 ≤ m ≤ k/(d+ 1), we denote

b(z) = c

D∏
i=1

(z − βi)

with nonzero c, β1, . . . , βD. If

zd − βi = (z − βi1) · · · (z − βid),

then the extra assumption in this case means, by (2.5), that at least one of βij

is a zero of a1(z) for each i. This is possible only if deg a1(z) ≥ D, but then
we have a contradiction, since deg a1(z) = D −m < D. �

Remark 2.1. The extra assumption given in Lemma 2.1 in the case 1 ≤ m ≤
≤ k/(d+ 1) is needed, since otherwise the functional equation (1.1) may have
rational solutions. In the case d = 2 and k = 3 we give the following two
examples. If

r(z) =
z2 + z + 1

z(z2 + 1)
,

then the function f(z) = z/(z + 1) satisfies (1.1), and if

r(z) =
1− 2z − 2z2

2z(2z2 − 1)
,

then (1.1) has a solution f(z) = 2z/(2z − 1).
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Proof of Theorem 1.1. Its statement follows immediately from Mahler’s
Theorem, if R ≥ 1, and the same holds for all 0 < |α| < R in the case R < 1.
If R < 1 and α is an algebraic number satisfying R ≤ |α| < 1, we can see that
f(α) is defined and transcendental as follows. Let n denote the smallest positive
integer for which β := αdn

satisfies |β| < R. Then f(β) is transcendental by
Mahler’s Theorem and therefore all numbers

f(αdn−1

) =
1

r(αdn−1) + f(β)
= [r(αdn−1

) + f(β)],

f(αdn−2

) =
1

r(αdn−2) + f(αdn−1)
= [r(αdn−2

), r(αdn−1

) + f(β)],

. . .

f(α) =
1

r(α) + f(αd)
= [r(α), r(αd), . . . , r(αdn−1

) + f(β)]

are well defined and transcendental. Note here that, at each step, the transcen-
dence of f(αdj

) and our assumption q(αdj−1

) �= 0 implies that the denominator

in the fraction above is defined and nonzero and so f(αdj−1

) is defined and
transcendental. �

Remark 2.2. In the case R < 1, it is not possible to extend the definition of
f(z) to all |z| < 1 by the above considerations, namely with transcendental z
some of the denominators above could vanish.
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Bordeaux, 14 (2002), 489–495.

[5] Molchanov, S.M., Estimates for the measure of transcendence in the
Mahler method, Diophantine Approximations (Part 1) (Russian), Moscov.
Gos. Univ., Mekh.-Math. Fak. (1985), 56–65.



172 P. Bundschuh and K. Väänänen

[6] Nishioka, K., Mahler Functions and Transcendence, Lecture Notes in
Math. 1631, Springer, Berlin, 1996.
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