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Abstract. In this note, we unify many well-known theorems in abstract
algebra as a result on a principal ideal domain (PID), Theorem 1.3. The
proof entails an elucidating argument which establishes several isomor-
phism theorems in the theory of groups and fields at a stretch. This in-
cludes the use of the direct sum to interpret the method of constructing an
extension ring of a given ring R as a quotient ring of the polynomial ring
over R modulo a non-zero ideal, which in turn includes the case of the ring
consisting of degree 0 polynomials as elements of the ring R.

1. Introduction and the main result

In many books on algebra [2], [3], [5], [6] it is customary to state the follow-
ing two theorems (or similar) as independent and prove them independently
by applications of the ring homomorphism theorem and the (group) homomor-
phism theorem, respectively.

Theorem 1.1. Let K be a field of charK = 0 and let K[x] denote the polyno-
mial ring to which we refer below. Let θ be a root of an irreducible polynomial
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f(x) ∈ K[x] of degree n in an extension field L of K (e.g. in its algebraic
closure). Then we have

(1.1) ϕ : K[x]/(f(x)) � K(θ)

where K(θ) is the smallest extension field ∈ L that contains K and θ and is
explicitly given as

(1.2) K(θ) = K ⊕ · · · ⊕Kθn−1.

The construction of the extension field K(θ) in this theorem is not so imme-
diate since it is not clear if an irreducible polynomial can be decomposed. An
instructive example is the case of the polynomial X2 + 1 which is irreducible
over the field R of real numbers. R(i) as one of the constructions of C. This
cannot be formed if there is no algebraic closure and the only way is to interpret
this as the polynomial ring R[X]/(X2 + 1).

Theorem 1.2. Suppose G is a group written additively and let a ∈ G. We
denote the cyclic subgroup generated by a by H = {ma|m ∈ Z}. Then we have

(1.3) Z/(d) � H.

Here d is a non-negative integer. If d ∈ N, then H is a finite group and we
have

(1.4) d = min{m ∈ N|ma = 0}.

Theorem 1.2 entails

Corollary 1.1. Let R be an integral domain (or a field) and consider the
subdomain generated by 1: R0 = {m1|m ∈ Z}. Then R0 � Z or R0 � Z/(p),
where p is a prime.

Proof. This is the case of Theorem 1.2 with a = 1, which implies R0 � Z/(d).
If d = 0, then the right-hand side is Z and if d ∈ Z, then d must be a prime
since R0 is an integral domain. �

This clarifies the well-known fact that the former is the characteristic 0 and
the latter is the characteristic p case In case they are fields, they contain Q and
Fp = Z/(p) as prime fields, respectively.

Our main result is unification of all these into the following theorem and
providing a more elucidating proof.

Theorem 1.3. Let R be a PID and R′ an R-module [resp. additive Abelian
groups] and let

(1.5) ϕ : R → R′
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be an R-module homomorphism [resp. a group homomorphism].Then

(1.6) ϕ̄ : R/Kerϕ � ϕ(R)(⊂ R′).

In the case of PIDs, there exists a prime element p ∈ R such that

(1.7) ϕ̄ : R/(p) � ϕ(R).

Proof. By (1.5)

(1.8) ϕ : R → ϕ(R)(⊂ R′)

is a surjective homomorphism. It suffices to lift this up to an isomorphism by
restricting the domain. Since ϕ(a) = ϕ(b) amounts to b − a ∈ Ker f := N or
a+N = b+N , The injectivity condition: ϕ(a) = ϕ(b) =⇒ a = b is realized in
in reduced form in G/N . Hence the correspondence (1.6) is a bijection and so
also an isomorphism.

If R′ is a PID, Kerϕ must be a principal ideal, say (p). Since ϕ(R) is an
integral domain, (p) must be a prime ideal and a fortiori p is a prime element
and (p) is also a maximal ideal, implying that R/(p) is a field. �

The above proof amounts to restricting the domain of the epimorphism to
a factor group so that injectivity of the new map is assured. With this view,
one can give more accessible proofs of many other results. We shall give some
examples.

Theorem 1.4. (Homomorphism Theorem.) If f is a homomorphism from a
group G into a group G′. Then there exists an isomorphism f̄ : G/N → Im f ,
where N is Ker f �G.

Although the following theorem is a consequence of Theorem 1.4, we may
give a direct and accessible proof.

Theorem 1.5. (The second homomorphism theorem.) Let H and N be sub-
groups of G and let N �G. Then H ∩N �H and we have the isomorphism

H/H ∩N ∼= HN/N

under the correspondence a(H ∩N) ←→ aN .

Proof. f : HN → H/H ∩ N is an epimorphism. It is enough to realize
injectivity in reduced form in HN/N . Hence the correspondence HN/N →
→ H/H ∩N is a bijection and so also an isomorphism. �
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2. Other algebraic systems

In earlier version of this note, we stated the theory of polynomials as ter-
minating (formal) power series [1]. The novelty lies in the use of the constant
term of a polynomial

Corollary 2.1. Let R ⊂ R[x] be a Euclidean domain and R′ an integral domain
which is an R-module. Let a ∈ R′, R(a) = {ma | m ∈ R} and let

(2.1) ϕ : R → R(a); ϕ(m) = (ma, 0, 0, . . .).

Then

(2.2) R/(a) � R(a) � 〈a〉.

Proof. A standard proof is as follows. Viewing (2.1) as ϕ : R → R(a);
ϕ(m) = ma, we see that ϕ is apparently a ring epimorphism. Since Ker f =
= {m ∈ R|ma = 0} is an ideal (a), the group homomorphism theorem applies.

�

Theorem 1.2 follows from this by specifying R = Z.

Remark 2.1. In [4], the left-hand side member of (2.2) is mentioned as a
method for constructing an extension of a given field K. We interpret this
passage in a slightly more generalized fashion, i.e. as a means to construct a
new extension ring which contains R as a subring. For any prime power q = pe,
the unique finite field Fq with q elements is a splitting field of the polynomial
Xq − X, which is therefore a 0-map over Fq and (2.2) is to mean that one
can still construct a ring extension. Therefore, Theorem 1.1 serves as a tool
for constructing an extension ring if f is reducible and an extension field if f
is irreducible, which is the simple extension in K̄ isomorphic to the left-hand
side.

In the case of finite fields, the situation is rather special.

For any prime power q = pe, there exists a unique finite field Fq with q
elements, which is a splitting field of Xq −X and F×

q is a cyclic group of order
q − 1.

If e > 1, one can choose an irreducible polynomial f(X) over Fp which is
a divisor of Xq − X. Let θ be a root of f . Then Theorem 1.1 holds in the
following form

(2.3) Fq = Fp1⊕ · · · ⊕ Fpθ
e−1 = Fp(θ).

Fermat’s little theorem, a typical example of a non-zero polynomial being a 0
map, says that Fp is a splitting field of Xp −X. In this case (2.3) holds as a
trivial identity Fp = Fp1.
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We state some results on algebraic systems generated by their subsystems
which have some flavor of homomorphism theorems and to which we may apply
the method of proof of Theorem 1.3.

In any algebraic system A, the subsystem 〈S〉 generated by a subset S ⊂ A
is defined to be the smallest subsystem that contains S. It can be expressed as

(2.4) 〈S〉 = ∩ H⊃S
A⊃H:subsystem

H.

We have seen several examples. K(θ) in (1.1) is the smallest subfield of
L ⊃ K that contains K and θ. The subdomain R0 in Corollary 1.1 is the
smallest subdomain that contains 1. HN in Corollary 1.5 is the smallest sub-
group of G that contains H and N . Suppose now we are given two subsystems
X and Y of A, that the intersection X ∩ Y is also a subsystem and that the
subsystem generated by X and Y is denoted X · Y . Further assume that the
residue classes of subsystems X ·Y/Y and X/(X ∩Y ) are formed and they are
the algebraic systems with the same operations in A modulo Y and X ∩ Y ,
respectively. Then they are isomorphic as algebraic systems and their order
relation between these equivalence classes is given by

Theorem 2.1. We have

(2.5) X/(X ∩ Y ) � (X · Y )/Y ; |(X · Y )/Y | = |X/(X ∩ Y )|.

Proof. Define the epimorphism

(2.6) ϕ : X → (X · Y )/Y ;x → x+ Y.

Then the station where ϕ is injective is X/Kerϕ and Kerϕ = X ∩ Y , whence
the result. �

To apply this, we take X,Y to be additive groups and if necessary we add
the multiplicativity ϕ(ab) = ϕ(a)ϕ(b) extra.

Theorem 1.5 is an example of groups.

Example 2.2. Suppose V is a linear space over a scalar field K and W1,W2

be subspaces. Then the subspace generated by W1,W2 is 〈W1,W2〉 = W1+W2.
Theorem 2.1 applies to give

(2.7) W1/(W1∩W2) � (W1+W2)/W2, |W1/(W1∩W2)| = |(W1+W2)/W2|.

The order relation is a multiplicative analogue of the dimension formula

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩Ws).

Both shows that the condition for W1 + W2 is isomorphic to the Cartesian
product W1×W2 and hence to the direct sum W1⊕W2 is that W1∩W2 = {0}.
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Example 2.3. Suppose K,L are subfields of some field F . Then the subfield
generated by K,L is 〈K,L〉 = K · L. Theorem 2.1 applies to give

(2.8) K/(K ∩ L) � (K · L)/L, |K/(K ∩ L)| = |(K · L)/L|.

The order relation amounts to the degree relation

[K · L : L] = [K : K ∩ L].

Acknowledgement. The referee has kindly suggested that the use of direct
sums as polynomials is well-known and we removed that part in this version,
resorting to [1] or [5]. In most of the books, the theory is stated using an
indeterminate.
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