
Annales Univ. Sci. Budapest., Sect. Comp. 47 (2018) 109–116

A NEW CLASS OF UNIQUE RANGE SETS

FOR MEROMORPHIC FUNCTIONS

Vu Hoai An and Pham Ngoc Hoa

(Hai Duong, Vietnam)

Communicated by Bui Minh Phong

(Received February 24, 2018; accepted May 30, 2018)

Abstract. In this paper, we give a new class of unique range sets for
meromorphic functions. Note that this class different from Yi’s [6], Frank–
Reinders’s [3] and Fujimoto’s [4].

1. Introduction

In this paper, by a meromorphic function we mean a meromorphic function in
the complex plane C. We assume that the reader is familiar with the notations
in the Nevanlinna theory (see [4], [5] and [8]). Let f be a non-constant mero-
morphic function on C. For every a ∈ C, define the function νaf : C → N
by

νaf (z) =

{
0 if f(z) 6= a

m if f(z) = a with multiplicity m,

and set ν∞f = ν01
f

. For f ∈M(C) and S ⊂ C ∪ {∞}, we define

Ef (S) =
⋃
a∈S
{(z, νaf (z)) : z ∈ C}.
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Two meromorphic functions f, g are said to share S, counting multiplicity, if
Ef (S) = Eg(S). Let a set S ⊂ C ∪ {∞} and f and g be two non-constant
meromorphic (entire) functions. If Ef (S) = Eg(S) implies f = g for any two
non-constant meromorphic (entire) functions f, g, then S is called a unique
range set for meromorphic(entire) functions or, in brief, URSM(URSE). Gross
and Yang [2] showed that the set S = {z ∈ C| z + ez = 0} is a URSE.
Since then, URSE and URSM with finitely many elements have been found
by Yi [6], Mues and Reinders [1], Frank and Reinders [3], Fujimoto [4]. In
fact, examples of unique range sets given by most authors are sets of the form
{z ∈ C| zn + azm + b = 0} under suitable conditions on the constants a and
b and on the positive integers n and m( see[6]). So far, the smallest unique
range set for meromorphic functions has 11 elements and was given by Frank
and Reinders[3]. They proved the following result.

Theorem A. The set{
z ∈ C

∣∣∣ (n− 1)(n− 2)

2
zn + n(n− 2)zn−1 +

(n− 1)n

2
zn−2 + b = 0

}
,

where n ≥ 11 and b 6= 0, 1, is a unique range set for meromorphic functions.

Fujimoto [4] extended this result to zero sets of more general polynomi-
als PF (z) satisfying the condition: for any zeros ei 6= ej of P

′

F (z) we have
PF (ei) 6= PF (ej).

In this paper, we give a new class of unique range sets for meromorphic
functions. Note that this class is different from Yi’s [6], Frank–Reinders’s [3]
and Fujimoto’s [4] (see Theorem 2.1,Theorem 2.2).

2. A new class of unique range sets for meromorphic functions

We assume that the reader is familiar with the notations in the Nevanlinna
theory (see [3], [4] and [8]).

We first need the following Lemmas.

Lemma 2.1. (See [8].) Let f be a non-constant meromorphic function on C
and let a1, a2, ..., aq be distinct points of C ∪ {∞}. Then

(q − 2)T (r, f) ≤
q∑
i=1

N1(r,
1

f − ai
) + S(r, f),

where S(r, f) = o(T (r, f)) for all r, except for a set of finite Lebesgue measure.
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Lemma 2.2. (See [7].) Let d, n ∈ N∗, d ≥ n2, and let f1, ..., fn+1 be entire
functions on C, not identically zero and satisfying the condition fd1 + fd2 + ...+
+fdn+1 = 0. Then there is a decomposition of indices, {1, ..., n+ 1} = ∪Iv, such
that

i. Every Iv contains at least 2 indices;

ii. For j, i ∈ Iv; fi = cijfj , where cij is a non-zero constant.

Now let us describe main result of the paper.

Let d ∈ N∗, d ≥ 25 and a, b, c ∈ C, a, b, c 6= 0,

(A1) with c 6= bd

ad
, a2d 6= 1, c 6= adbd, c 6= (−1)dbd

a2d
, c 6= (−1)dbd.

Then we consider following polynomial

(A2) P (z) = zd + (az + b)d + c, and let P (z) has only simple zeros.

We need following lemma.

Set v1 = (1, 0), v2 = (0, e) with ed = c, v3 = (a, b). Define the set

A :=
{
α = (α1, α2)

}
, where α1, α2 are 2 distinct numbers of {1, 2, 3}. For

each element α ∈ A, we associate the matrix

Aα =

(
vα1

vα2

)
.

Main result of the paper is following theorem.

Theorem 2.1. Let S be the set of zeros of the above polynomial P (z). Assume
that the conditions (A1), (A2) are satisfied. Then S is a URSM .

Proof. Write f = f1
f2

(resp., g = g1
g2

), where f1, f2 (resp., g1, g2) are entire
functions on C having no common zeros. Set

Q(z1, z2) = zd1 + (az1 + bz2)d + edzd2 , with ed = c

We consider following linear forms Li(z1, z2), i = 1, 2, 3, on C2:

L1(z1, z2) = z1, L2(z1, z2) = ez2, L3(z1, z2) = az1 + bz2.

We first prove that if

Q(f1, f2) = Q(g1, g2), then gi = tfi, i = 1, 2, where t ∈ C, t 6= 0,
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and therefore f = g. From Q(f1, f2) = Q(g1, g2) we have

(L1(f1, f2))d + (L2(f1, f2))d + (L3(f1, f2))d = (L1(g1, g2))d + (L2(g1, g2))d+

(2.1) +(L3(g1, g2))d.

For simplicity, set Li(f̃) = Li(f1, f2), Li(g̃) = Li(g1, g2). Then from (2.1) we
have

(2.2) (L1(f̃))d + (L2(f̃))d + (L3(f̃))d = (L1(g̃))d + (L2(g̃))d + (L3(g̃))d.

We shall prove that for each i = 1, 2, 3, there exists a non-zero constant ci such
that Li(f̃) = ciLi(g̃).

By non-constant of the functions f and g we give Li(f̃) 6≡ 0, Li(g̃) 6≡ 0.
Since d ≥ 25, from Lemma 2.2 it follows that for each i = 1, 2, 3, we have one
of the following possibilities:

i/ there exists a i
′ ∈ {1, 2, 3} with i

′ 6= i such that

(2.3) Li(f̃) = bii′Li′ (f̃), bii′ 6= 0.

ii/ there exists a i
′ ∈ {1, 2, 3} such that

(2.4) Li(f̃) = cii′Li′ (g̃), cii′ 6= 0.

iii/ there exist i
′
, i
′′ ∈ {1, 2, 3}, i′ 6= i

′′
such that

Li(f̃) = cii′Li′ (g̃) = cii′′Li′′ (g̃), cii′ , cii′′ 6= 0,

and then

(2.5) Li′ (g̃) = ci′ i′′Li′′ (g̃), ci′ i′′ 6= 0.

If we have (2.3) or (2.5), we get a contradiction to the hypothesis of non-
constant of the functions f and g. Thus, we have only possibility (2.4), i. e., for
each i = 1, 2, 3, there exists an unique σ(i) ∈ {1, 2, 3} with σ is a permutation
of {1, 2, 3} such that

(2.6) Li(f̃) = cσ(i)Lσ(i)(g̃), this means that, Li(f1, f2) = cσ(i)Lσ(i)(g1, g2),

where cdσ(i) = 1.

Set α = (1, 2), β = (2, 3), and α′ = (σ(1), σ(2)), β′ = (σ(2), σ(3)). Then

(2.7) Aα =

(
v1
v2

)
, Aβ =

(
v2
v3

)
, and detAα = e, detAβ = −ae.



On the uniqueness problem of meromorphic functions 113

Now we consider the following possibilities for (2.6):

Case 1. α′ = (2, 1), β′ = (1, 3). Then

(2.8) Aα′ =

(
v2
v1

)
, Aβ′ =

(
v1
v3

)
, and detAα′ = −e, detAβ′ = b.

From this and (2.6) we give

L1(f1, f2) = c2L2(g1, g2), L2(f1, f2) = c1L1(g1, g2),

(2.9) L3(f1, f2) = c3L3(g1, g2).

Then we get by (2.9)

(2.10) Aαf
t = BAα′ g

t,

where

B =

(
c2 0
0 c1

)
,

and

(2.11) Aβf
t = CAβ′ g

t,

where

C =

(
c1 0
0 c3

)
.

From the equations (2.10), (2.11) we get

(2.12) f t = A−1α BAα′ g
t, f t = A−1β CAβ′ g

t.

By deleting f t from the equations (2.12) we obtain A−1α BAα′ g
t = A−1β CAβ′ g

t.

By non-constant of g we have A−1α BAα′ = A−1β CAβ′ . By cd
i

= 1, i = 1, 2, 3,
and noting that

detAαdetA−1α = 1,detAβdetA−1β = 1,

we obtain

(detB)d = 1, (detC)d = 1,(
detAα
detAα′

)d
=

(
detAβ
detAβ′

)d
, c =

bd

ad
.

a contradiction to the hypothesis c 6= bd

ad
.
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Case 2. α′ = (3, 2), β′ = (2, 1). From this and (2.6) we give

L1(f1, f2) = c3L3(g1, g2), L2(f1, f2) = c2L2(g1, g2),

(2.13) L3(f1, f2) = c1L1(g1, g2).

By the similar arguments as in Case 1 we obtain a contradiction to the hy-
pothesis a2d 6= 1.

Case 3. α′ = (3, 1), β′ = (1, 2). From this and (2.6) we give

L1(f1, f2) = c3L3(g1, g2), L2(f1, f2) = c1L1(g1, g2),

(2.14) L3(f1, f2) = c2L2(g1, g2).

By the similar arguments as in Case 1 we obtain a contradiction to the hy-
pothesis c 6= adbd.

Case 4. α′ = (2, 3), β′ = (3, 1). From this and (2.6) we give

L1(f1, f2) = c2L2(g1, g2), L2(f1, f2) = c3L3(g1, g2),

(2.15) L3(f1, f2) = c1L1(g1, g2).

By the similar arguments as in Case 1 we obtain a contradiction to the hy-

pothesis c 6= (−1)dbd

a2d
.

Case 5. α′ = (1, 3), β′ = (3, 2). From this and (2.6) we give

L1(f1, f2) = c1L1(g1, g2), L2(f1, f2) = c3L3(g1, g2),

(2.16) L3(f1, f2) = c2L2(g1, g2).

By the similar arguments as in Case 1 we obtain a contradiction to the hy-
pothesis c 6= (−1)dbd.

Case 6. α′ = (1, 2), β′ = (2, 3). From this and (2.6) we give

L1(f1, f2) = c1L1(g1, g2), L2(f1, f2) = c2L2(g1, g2),

(2.17) L3(f1, f2) = c3L3(g1, g2).

Since L1, L2 are linearly independent, L1, L2, L3 are linearly dependent, there
exist non-zero constants tk such that

L3 =

2∑
k=1

tkLk, and L3(f̃) =

2∑
k=1

tkLk(f̃), L3(g̃) =

2∑
k=1

tkLk(g̃),
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Lk(f̃) = ckLk(g̃), k = 1, 2, L3(f̃) = c3L3(g̃).

Thus,
2∑
k=1

(c3 − ck)tkLk(g̃) = 0.

Since f1, f2 are linearly independent, it follows that all the ci are equal each to
other, say ci = t. Then we have gi = tfi for i = 1, 2. Therefore f = g.

Now we are going to complete the proof of Theorem 2.1. By Ef (S) = Eg(S)
it is easy to see that there exists an entire function h such that Q(f1, f2) =

ehQ(g1, g2). Set l = e
h
d and G1 = lg1, G2 = lg2. Then Q(f1, f2) = Q(G1, G2).

By the similar arguments as above we have f1
f2

= G1

G2
. Therefore f = g. Theorem

2.1 is proved. �

A example of new class of unique range sets for meromorphic functions in
Theorem 2.1 is following.

Theorem 2.2. Let d ∈ N∗, d ≥ 25 and S be the set of zeros of polynomial
P (z) = zd + (2z + 5)d + 1. Then S is a URSM .

Proof. By P (z) = zd + (2z + 5)d + 1 we have a = 2, b = 5, c = 1. From this it
follows that

a, b, c 6= 0, and c 6= bd

ad
, a2d 6= 1, c 6= adbd, c 6= (−1)dbd

a2d
, c 6= (−1)dbd.

So the condition (A1) is satisfied. We shall prove that the condition (A2) is
satisfied. Take l is a any zero of P

′
(z) = d(zd−1 + 2(2z + 5)d−1). Then

ld−1 + 2(2l + 5)d−1 = 0, (2 +
5

l
)d−1 = −1

2
. Set 2 +

5

l
= h. Then hd−1 = −1

2
,

l =
5

h− 2
, (2l + 5)d−1 = −1

2
ld−1, ld + (2l + 5)d + 1 = ld − 1

2
ld−1(2l + 5) + 1

(2.18) = −5

2
ld−1 + 1 = −5

2

5d−1

(h− 2)d−1
+ 1 = − 5d

2(h− 2)d−1
+ 1.

Moreover

|h|d−1 =
1

2
, |h| = (

1

2
)

1

d− 1 , 0 < |h− 2|d−1 ≤ (|h|+ 2)d−1,

0 < |h− 2|d−1 ≤ ((
1

2
)

1

d− 1 + 2)d−1 =
(2.2

1

d− 1 + 1)d−1

2
,

0 < 2.|h− 2|d−1 ≤ (2.2

1

d− 1 + 1)d−1,
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(2.19)
5d

2.|h− 2|d−1
≥ 5d

(2.2
1

d−1 + 1)d−1
> 1.

Combining (2.18) and (2.19) we get − 5d

2(h− 2)d−1
+ 1 6= 0. Thus P (l) 6= 0. So

the condition (A2) is satisfied.

Now applying Theorem 2.1 to the set of zeros of polynomial P (z) = zd +
(2z + 5)d + 1 we obtain conclusion of Theorem 2.2. �
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