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Abstract. In this paper, we give a new class of unique range sets for
meromorphic functions. Note that this class different from Yi’s [6], Frank—
Reinders’s [3] and Fujimoto’s [4].

1. Introduction

In this paper, by a meromorphic function we mean a meromorphic function in
the complex plane C. We assume that the reader is familiar with the notations
in the Nevanlinna theory (see [4], [5] and [8]). Let f be a non-constant mero-
morphic function on C. For every a € C, define the function v§ : C — N

by
\ 0 if f(2)#a
Vf(z) = . . .
m if f(z) = a with multiplicity m,
and set v7° =14 For f € M(C) and S C CU {oo}, we define
7

Ep(S) = J{(z.vf(2) : z € C}.

a€sS
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Two meromorphic functions f, g are said to share S, counting multiplicity, if
E¢(S) = E4(S). Let aset S C CU{oo} and f and g be two non-constant
meromorphic (entire) functions. If E;(S) = E,(S) implies f = ¢ for any two
non-constant meromorphic (entire) functions f, g, then S is called a unique
range set for meromorphic(entire) functions or, in brief, URSM (URSFE). Gross
and Yang [2] showed that the set S = {z € C| 2+ e* = 0} is a URSE.
Since then, URSE and URSM with finitely many elements have been found
by Yi [6], Mues and Reinders [1], Frank and Reinders [3], Fujimoto [4]. In
fact, examples of unique range sets given by most authors are sets of the form
{#z € C|] 2™ + az™ + b = 0} under suitable conditions on the constants a and
b and on the positive integers n and m( see[6]). So far, the smallest unique
range set for meromorphic functions has 11 elements and was given by Frank
and Reinders[3]. They proved the following result.

Theorem A. The set

(n—1)n

{ZG(C ‘ —(n_1)(n_2)z”+n(n—2)z”_1+ 5

5 z”_2+b:O},

where n > 11 and b # 0,1, is a unique range set for meromorphic functions.

Fujimoto [4] extended this result to zero sets of more general polynomi-
als Pp(z) satisfying the condition: for any zeros e; # e; of Pp(z) we have
Pp(ei) # Pr(e;).

In this paper, we give a new class of unique range sets for meromorphic
functions. Note that this class is different from Yi’s [6], Frank—Reinders’s [3]
and Fujimoto’s [4] (see Theorem 2.1, Theorem 2.2).

2. A new class of unique range sets for meromorphic functions

We assume that the reader is familiar with the notations in the Nevanlinna
theory (see [3], [4] and [8]).

We first need the following Lemmas.

Lemma 2.1. (See [8].) Let f be a non-constant meromorphic function on C
and let a1, aq, ..., aq be distinct points of CU {oo}. Then

(4= 27(.1) < Y M, %) 50 1),

where S(r, f) = o(T(r, f)) for all v, except for a set of finite Lebesgue measure.
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Lemma 2.2. (See [7].) Let d,n € N*, d > n?, and let fi,..., fnr1 be entire
functions on C, not identically zero and satisfying the condition fld + fé’l + ...+
—l—fff_H = 0. Then there is a decomposition of indices, {1,...,n+ 1} = UI,, such
that

i. Fvery I, contains at least 2 indices;

ii. For j,i € I,; fi = cijf;, where cij is a non-zero constant.
Now let us describe main result of the paper.
Let d € N*, d > 25and a,b,c € C, a,b,c #0,

bd (—1)dbd
(A1) with ¢ # prk a?? £ 1, ¢ #a?, ¢ # a0 € # (—=1)%1.

Then we consider following polynomial
(A2) P(z) = 2%+ (az + b)Y + ¢, and let P(z) has only simple zeros.

We need following lemma.
Set vy = (1,0), v2 = (0,€) with e? = ¢, v3 = (a,b). Define the set

A= {a = (al,ag)}, where a1, ag are 2 distinet numbers of {1,2,3}. For
each element o € A, we associate the matrix

Vay
Aa = <Ua2> .

Main result of the paper is following theorem.

Theorem 2.1. Let S be the set of zeros of the above polynomial P(z). Assume
that the conditions (A1), (As) are satisfied. Then S is a URSM.

Proof. Write f = % (resp., g = %)’ where f1, fo (resp., g1,g2) are entire
functions on C having no common zeros. Set

Q(z1,20) = 28 + (az1 + bzo)? + e?28, with e? = ¢
We consider following linear forms L;(21,22),i = 1,2,3, on C%:
Ly(z1,22) = 21, La(z1,22) = eza, L3(z1,22) = az1 + bzs.
We first prove that if

Q(fl)fQ) = Q(91792)7 then 9i = tf’iai = 1a2a where ¢ € (Cvt 7£ Oa
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and therefore f = g. From Q(f1, f2) = Q(g1, g2) we have

(L1 (f1, )+ (La(f1, £2))" 4+ (Ls(f1, f2)) = (L1(g1, 92))* + (L2(g1, 92))*+

(2.1) +(La(g1,92))".

For simplicity, set L;(f) = L;(f1, f2), L:(§) = Li(g1,92). Then from (2.1) we
have

(2.2) (LN + (LoD + (La(H)) = (L1(@))" + (L2(9)" + (Ls(@)".

We shall prove that for each i = 1,2, 3, there exists a non-zero constant ¢; such

that L;(f) = ¢;Li(g).

By non-constant of the functions f and g we give L;(f) # 0, Li(§) # 0.
Since d > 25, from Lemma 2.2 it follows that for each i = 1,2, 3, we have one
of the following possibilities:

i/ there exists a i € {1,2,3} with i # i such that
(2.3) Li(f) = by Ly (f)a by # 0.

ii/ there exists a i € {1,2,3} such that

(2.4) Li(f) = ¢y Ly (9), ¢;r # 0.
iii/ there exist i ,i € {1,2,3},i #4 such that
Li(f) = ¢,y Ly () = ¢,y Ly (9), ¢y s ¢ # 0,
and then
(2.5) L (g) = ¢y Lin (9), ¢ # 0.

If we have (2.3) or (2.5), we get a contradiction to the hypothesis of non-
constant of the functions f and g. Thus, we have only possibility (2.4), i. e., for
each i = 1,2, 3, there exists an unique o(i) € {1,2,3} with o is a permutation
of {1,2,3} such that

(2.6) Li(f) = co@i)Lo(iy(g), this means that, L;(f1, f2) = co(i) Loy (91, 92),

where ¢« = 1.
o (1)
Set a = (1,2), 8 =(2,3), and o/ = (0(1),0(2)), 8 = (c(2),0(3)). Then

(2'7) Ay = (Ul) , Aﬁ = (zQ) , and detA, = e, detAB = —aqae.
3

U2
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Now we consider the following possibilities for (2.6):
Case 1. o/ =(2,1), 8/ = (1,3). Then

(2.8) Ay = (UQ) , Ag = <21> , and detAy = —e, detAg =Db.
3

U1
From this and (2.6) we give

Li(f1, f2) = caLla(g1,92), L2(f1, f2) = cil1(g1,92),

(2.9) Ls(f1, f2) = c3L3(g1, g2).

Then we get by (2.9)

(2.10) Aoft=BA_ 4",
where

B= (602 2) :
and
(2.11) Apft = C’Aﬂ/gt7
where

_ C1 O
= <0 03) ’
From the equations (2.10), (2.11) we get
t_o4-1 topt g1 ¢
(2.12) ff=A,BA, g ["=A;CAgzg.
By deleting f* from the equations (2.12) we obtain A;'BA_/ g* = Agchﬁ/gt.
By non-constant of g we have A7'BA_ = AgICAﬂ/. By cfl =1,i=1,2,3,

and noting that
detAgdetA;" =1,detAgdet A" =1,

we obtain
(detB)? =1, (detC)? = 1,

d d d
detA, \~ [ detAp oo b
detA, ) det Ay T qd”

a contradiction to the hypothesis ¢ # Z—z
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Case 2. o/ = (3,2), f/ = (2,1). From this and (2.6) we give

Li(f1, f2) = c3La(g1,92), La(f1, f2) = caLa(g1, 92),

(2.13) L3(f1, f2) = c1L1(91, g2)-

By the similar arguments as in Case 1 we obtain a contradiction to the hy-
pothesis a?? # 1.

Case 3. o’ =(3,1), 8/ = (1,2). From this and (2.6) we give

Ll(flva) = C3L3(glvg2)7 L2(f17f2) = ClLl(gl792)7

(2.14) L3(f1, f2) = c2La(91, g2)-

By the similar arguments as in Case 1 we obtain a contradiction to the hy-
pothesis ¢ # a®b?.
Case 4. o' =(2,3), 8/ = (3,1). From this and (2.6) we give

Li(f1, f2) = c2La(g1, 92), La(f1, f2) = c3L3(g1,92),

(2.15) Ls(f1, f2) = c1L1(g1, g2)-
By the similar arguments as in Case 1 we obtain a contradiction to the hy-
1 dbd
pothesis ¢ # ( 2)d .
a

Case 5. o/ = (1,3), /' = (3,2). From this and (2.6) we give

Li(f1, f2) = c1L1(91, 92), La(f1, f2) = c3L3(g1,92),

(2.16) L3(f1, f2) = cala(g1, 92)-

By the similar arguments as in Case 1 we obtain a contradiction to the hy-
pothesis ¢ # (—1)%b%.
Case 6. o/ = (1,2), /' = (2,3). From this and (2.6) we give

Ll(flan) = ClLl(glng)v LQ(fth) = 62L2<g17g2)7

(2.17) L3(f1, f2) = c3L3(91, g2)-

Since L1, Lo are linearly independent, L, Lo, L are linearly dependent, there
exist non-zero constants t; such that

2 2 2
Ly = ZtkLk, and Ls(f) = ZtkLk(f)a L3(g) = ZtkLk(g)v
k=1 p

k=1
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Li(f) = ek Li(3), k = 1,2, Ls(f) = e3L3(3).

Thus,
2

> (s — cx)tuLi(3) = 0.

k=1
Since f1, fo are linearly independent, it follows that all the ¢; are equal each to
other, say ¢; = t. Then we have g; = tf; for i = 1,2. Therefore f = g.

Now we are going to complete the proof of Theorem 2.1. By E¢(S) = E,4(S)
it is easy to see that there exists an entire function h such that Q(f1, f2) =
h

e"Q(g1,92). Set | =ed and Gy = lg1, Go = lga. Then Q(f1, f2) = Q(G1,G2).
By the similar arguments as above we have % = g—; Therefore f = g. Theorem
2.1 is proved. u

A example of new class of unique range sets for meromorphic functions in
Theorem 2.1 is following.

Theorem 2.2. Let d € N*, d > 25 and S be the set of zeros of polynomial
P(z) =21+ (22 +5)+1. Then S is a URSM.

Proof. By P(z) = 2% + (22 +5)? +1 we have a = 2, b = 5,¢ = 1. From this it
follows that

b dpd (—1)%? dpd

a,b,c# 0,and c # —, a™* # 1, ¢ # a"b", c # ——7—, c# (=1)"".

a a
So the condition (A;) is satisfied. We shall prove that the condition (As) is
satisfied. Take [ is a any zero of P (z) = d(2%~! + 2(22 + 5)?~1). Then
1

5 1 5
z*4+mm+m*4=Q(2+7w4:—§Sm2+7=hqmmh*1=—?

5 1 1
l:——f,@L+a*1=—§ﬂ*,ﬂ+cu+md+1=ﬂ—§ﬂ*mk+m+1

h—2
5 5 5d-1 5¢
2.18 =l 1= 4 1l=—————— 41
(2.18) 5t T 2 (h 2yt " 20— 28T "
Moreover
1
1 I
Bt = 55 B = (5)4=1, 0.< Jh— 2" < (|| +2)",
. b
[ N— a1 _ (224-1 + 1)

0<m—m*‘§«?d—1+m = 5 7
1

0<2|h—2/4"t < (22d—1 41)¢°L
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57 57
2.19 > > 1.
(2.19) 2[h =241 = (9971 4 1)d-1
d
Combining (2.18) and (2.19) we get T2yt +1#0. Thus P(l) # 0. So
the condition (As) is satisfied.
Now applying Theorem 2.1 to the set of zeros of polynomial P(z) = 2% 4
(22 +5)¢ + 1 we obtain conclusion of Theorem 2.2. [ |
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