A NEW CLASS OF UNIQUE RANGE SETS FOR MEROMORPHIC FUNCTIONS

Vu Hoai An and Pham Ngoc Hoa
(Hai Duong, Vietnam)
Communicated by Bui Minh Phong

(Received February 24, 2018; accepted May 30, 2018)

Abstract

In this paper, we give a new class of unique range sets for meromorphic functions. Note that this class different from Yi's [6], FrankReinders's [3] and Fujimoto's [4].

1. Introduction

In this paper, by a meromorphic function we mean a meromorphic function in the complex plane \mathbb{C}. We assume that the reader is familiar with the notations in the Nevanlinna theory (see [4], [5] and [8]). Let f be a non-constant meromorphic function on \mathbb{C}. For every $a \in \mathbb{C}$, define the function $\nu_{f}^{a}: \mathbb{C} \rightarrow \mathbb{N}$ by

$$
\nu_{f}^{a}(z)=\left\{\begin{array}{ll}
0 & \text { if } f(z) \neq a \\
m & \text { if } f(z)=a
\end{array} \text { with multiplicity } m\right.
$$

and set $\nu_{f}^{\infty}=\nu_{\frac{1}{f}}^{0}$. For $f \in \mathcal{M}(\mathbb{C})$ and $S \subset \mathbb{C} \cup\{\infty\}$, we define

$$
E_{f}(S)=\bigcup_{a \in S}\left\{\left(z, \nu_{f}^{a}(z)\right): z \in \mathbb{C}\right\} .
$$

Key words and phrases: Meromorphic function, Unique range set. 2010 Mathematics Subject Classification: 30D35.
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2012.19.

Two meromorphic functions f, g are said to share S, counting multiplicity, if $E_{f}(S)=E_{g}(S)$. Let a set $S \subset \mathbb{C} \cup\{\infty\}$ and f and g be two non-constant meromorphic (entire) functions. If $E_{f}(S)=E_{g}(S)$ implies $f=g$ for any two non-constant meromorphic (entire) functions f, g, then S is called a unique range set for meromorphic(entire) functions or, in brief, $U R S M(U R S E)$. Gross and Yang [2] showed that the set $S=\left\{z \in \mathbb{C} \mid z+e^{z}=0\right\}$ is a $U R S E$. Since then, $U R S E$ and $U R S M$ with finitely many elements have been found by Yi [6], Mues and Reinders [1], Frank and Reinders [3], Fujimoto [4]. In fact, examples of unique range sets given by most authors are sets of the form $\left\{z \in \mathbb{C} \mid z^{n}+a z^{m}+b=0\right\}$ under suitable conditions on the constants a and b and on the positive integers n and m (see[6]). So far, the smallest unique range set for meromorphic functions has 11 elements and was given by Frank and Reinders $[3]$. They proved the following result.

Theorem A. The set

$$
\left\{z \in \mathbb{C} \left\lvert\, \frac{(n-1)(n-2)}{2} z^{n}+n(n-2) z^{n-1}+\frac{(n-1) n}{2} z^{n-2}+b=0\right.\right\},
$$

where $n \geq 11$ and $b \neq 0,1$, is a unique range set for meromorphic functions.
Fujimoto [4] extended this result to zero sets of more general polynomials $P_{F}(z)$ satisfying the condition: for any zeros $e_{i} \neq e_{j}$ of $P_{F}^{\prime}(z)$ we have $P_{F}\left(e_{i}\right) \neq P_{F}\left(e_{j}\right)$.

In this paper, we give a new class of unique range sets for meromorphic functions. Note that this class is different from Yi's [6], Frank-Reinders's [3] and Fujimoto's [4] (see Theorem 2.1,Theorem 2.2).

2. A new class of unique range sets for meromorphic functions

We assume that the reader is familiar with the notations in the Nevanlinna theory (see [3], [4] and [8]).

We first need the following Lemmas.
Lemma 2.1. (See [8].) Let f be a non-constant meromorphic function on \mathbb{C} and let $a_{1}, a_{2}, \ldots, a_{q}$ be distinct points of $\mathbb{C} \cup\{\infty\}$. Then

$$
(q-2) T(r, f) \leq \sum_{i=1}^{q} N_{1}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f),
$$

where $S(r, f)=o(T(r, f))$ for all r, except for a set of finite Lebesgue measure.

Lemma 2.2. (See [7].) Let $d, n \in \mathbb{N}^{*}, d \geq n^{2}$, and let f_{1}, \ldots, f_{n+1} be entire functions on \mathbb{C}, not identically zero and satisfying the condition $f_{1}^{d}+f_{2}^{d}+\ldots+$ $+f_{n+1}^{d}=0$. Then there is a decomposition of indices, $\{1, \ldots, n+1\}=\cup I_{v}$, such that
i. Every I_{v} contains at least 2 indices;
ii. For $j, i \in I_{v} ; f_{i}=c_{i j} f_{j}$, where $c_{i j}$ is a non-zero constant.

Now let us describe main result of the paper.

$$
\text { Let } d \in \mathbb{N}^{*}, d \geq 25 \text { and } a, b, c \in \mathbb{C}, a, b, c \neq 0
$$

$\left(A_{1}\right) \quad$ with $c \neq \frac{b^{d}}{a^{d}}, a^{2 d} \neq 1, c \neq a^{d} b^{d}, c \neq \frac{(-1)^{d} b^{d}}{a^{2 d}}, c \neq(-1)^{d} b^{d}$.
Then we consider following polynomial
$\left(A_{2}\right) \quad P(z)=z^{d}+(a z+b)^{d}+c$, and let $P(z)$ has only simple zeros.
We need following lemma.
Set $v_{1}=(1,0), v_{2}=(0, e)$ with $e^{d}=c, v_{3}=(a, b)$. Define the set
$A:=\left\{\alpha=\left(\alpha_{1}, \alpha_{2}\right)\right\}$, where α_{1}, α_{2} are 2 distinct numbers of $\{1,2,3\}$. For each element $\alpha \in A$, we associate the matrix

$$
A_{\alpha}=\binom{v_{\alpha_{1}}}{v_{\alpha_{2}}} .
$$

Main result of the paper is following theorem.
Theorem 2.1. Let S be the set of zeros of the above polynomial $P(z)$. Assume that the conditions $\left(A_{1}\right),\left(A_{2}\right)$ are satisfied. Then S is a URSM.

Proof. Write $f=\frac{f_{1}}{f_{2}}$ (resp., $g=\frac{g_{1}}{g_{2}}$), where f_{1}, f_{2} (resp., g_{1}, g_{2}) are entire functions on \mathbb{C} having no common zeros. Set

$$
Q\left(z_{1}, z_{2}\right)=z_{1}^{d}+\left(a z_{1}+b z_{2}\right)^{d}+e^{d} z_{2}^{d}, \text { with } e^{d}=c
$$

We consider following linear forms $L_{i}\left(z_{1}, z_{2}\right), i=1,2,3$, on \mathbb{C}^{2} :

$$
L_{1}\left(z_{1}, z_{2}\right)=z_{1}, L_{2}\left(z_{1}, z_{2}\right)=e z_{2}, L_{3}\left(z_{1}, z_{2}\right)=a z_{1}+b z_{2} .
$$

We first prove that if

$$
Q\left(f_{1}, f_{2}\right)=Q\left(g_{1}, g_{2}\right), \text { then } g_{i}=t f_{i}, i=1,2, \text { where } t \in \mathbb{C}, t \neq 0
$$

and therefore $f=g$. From $Q\left(f_{1}, f_{2}\right)=Q\left(g_{1}, g_{2}\right)$ we have

$$
\left(L_{1}\left(f_{1}, f_{2}\right)\right)^{d}+\left(L_{2}\left(f_{1}, f_{2}\right)\right)^{d}+\left(L_{3}\left(f_{1}, f_{2}\right)\right)^{d}=\left(L_{1}\left(g_{1}, g_{2}\right)\right)^{d}+\left(L_{2}\left(g_{1}, g_{2}\right)\right)^{d}+
$$

$$
\begin{equation*}
+\left(L_{3}\left(g_{1}, g_{2}\right)\right)^{d} \tag{2.1}
\end{equation*}
$$

For simplicity, set $L_{i}(\tilde{f})=L_{i}\left(f_{1}, f_{2}\right), L_{i}(\tilde{g})=L_{i}\left(g_{1}, g_{2}\right)$. Then from (2.1) we have

$$
\begin{equation*}
\left(L_{1}(\tilde{f})\right)^{d}+\left(L_{2}(\tilde{f})\right)^{d}+\left(L_{3}(\tilde{f})\right)^{d}=\left(L_{1}(\tilde{g})\right)^{d}+\left(L_{2}(\tilde{g})\right)^{d}+\left(L_{3}(\tilde{g})\right)^{d} . \tag{2.2}
\end{equation*}
$$

We shall prove that for each $i=1,2,3$, there exists a non-zero constant c_{i} such that $L_{i}(\tilde{f})=c_{i} L_{i}(\tilde{g})$.

By non-constant of the functions f and g we give $L_{i}(\tilde{f}) \not \equiv 0, L_{i}(\tilde{g}) \not \equiv 0$. Since $d \geq 25$, from Lemma 2.2 it follows that for each $i=1,2,3$, we have one of the following possibilities:
i/ there exists a $i^{\prime} \in\{1,2,3\}$ with $i^{\prime} \neq i$ such that

$$
\begin{equation*}
L_{i}(\tilde{f})=b_{i i^{\prime}} L_{i^{\prime}}(\tilde{f}), b_{i i^{\prime}} \neq 0 \tag{2.3}
\end{equation*}
$$

ii/ there exists a $i^{\prime} \in\{1,2,3\}$ such that

$$
\begin{equation*}
L_{i}(\tilde{f})=c_{i i^{\prime}} L_{i^{\prime}}(\tilde{g}), c_{i i^{\prime}} \neq 0 \tag{2.4}
\end{equation*}
$$

iii/ there exist $i^{\prime}, i^{\prime \prime} \in\{1,2,3\}, i^{\prime} \neq i^{\prime \prime}$ such that

$$
L_{i}(\tilde{f})=c_{i i^{\prime}} L_{i^{\prime}}(\tilde{g})=c_{i i^{\prime \prime}} L_{i^{\prime \prime}}(\tilde{g}), c_{i i^{\prime}}, c_{i i^{\prime \prime}} \neq 0
$$

and then

$$
\begin{equation*}
L_{i^{\prime}}(\tilde{g})=c_{i^{\prime} i^{\prime \prime}} L_{i^{\prime \prime}}(\tilde{g}), c_{i^{\prime} i^{\prime \prime}} \neq 0 \tag{2.5}
\end{equation*}
$$

If we have (2.3) or (2.5), we get a contradiction to the hypothesis of nonconstant of the functions f and g. Thus, we have only possibility (2.4), i. e., for each $i=1,2,3$, there exists an unique $\sigma(i) \in\{1,2,3\}$ with σ is a permutation of $\{1,2,3\}$ such that
(2.6) $L_{i}(\tilde{f})=c_{\sigma(i)} L_{\sigma(i)}(\tilde{g})$, this means that, $L_{i}\left(f_{1}, f_{2}\right)=c_{\sigma(i)} L_{\sigma(i)}\left(g_{1}, g_{2}\right)$, where $c_{\sigma(i)}^{d}=1$.

Set $\alpha=(1,2), \beta=(2,3)$, and $\alpha^{\prime}=(\sigma(1), \sigma(2)), \beta^{\prime}=(\sigma(2), \sigma(3))$. Then

$$
\begin{equation*}
A_{\alpha}=\binom{v_{1}}{v_{2}}, A_{\beta}=\binom{v_{2}}{v_{3}}, \text { and } \operatorname{det} A_{\alpha}=e, \operatorname{det} A_{\beta}=-a e \tag{2.7}
\end{equation*}
$$

Now we consider the following possibilities for (2.6):
Case 1. $\alpha^{\prime}=(2,1), \beta^{\prime}=(1,3)$. Then

$$
\begin{equation*}
A_{\alpha^{\prime}}=\binom{v_{2}}{v_{1}}, A_{\beta^{\prime}}=\binom{v_{1}}{v_{3}}, \text { and } \operatorname{det} A_{\alpha^{\prime}}=-e, \operatorname{det} A_{\beta^{\prime}}=b \tag{2.8}
\end{equation*}
$$

From this and (2.6) we give

$$
L_{1}\left(f_{1}, f_{2}\right)=c_{2} L_{2}\left(g_{1}, g_{2}\right), L_{2}\left(f_{1}, f_{2}\right)=c_{1} L_{1}\left(g_{1}, g_{2}\right),
$$

$$
\begin{equation*}
L_{3}\left(f_{1}, f_{2}\right)=c_{3} L_{3}\left(g_{1}, g_{2}\right) \tag{2.9}
\end{equation*}
$$

Then we get by (2.9)

$$
\begin{equation*}
A_{\alpha} f^{t}=B A_{\alpha^{\prime}} g^{t} \tag{2.10}
\end{equation*}
$$

where

$$
B=\left(\begin{array}{cc}
c_{2} & 0 \\
0 & c_{1}
\end{array}\right)
$$

and

$$
\begin{equation*}
A_{\beta} f^{t}=C A_{\beta^{\prime}} g^{t} \tag{2.11}
\end{equation*}
$$

where

$$
C=\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{3}
\end{array}\right) .
$$

From the equations (2.10), (2.11) we get

$$
\begin{equation*}
f^{t}=A_{\alpha}^{-1} B A_{\alpha^{\prime}} g^{t}, f^{t}=A_{\beta}^{-1} C A_{\beta^{\prime}} g^{t} \tag{2.12}
\end{equation*}
$$

By deleting f^{t} from the equations (2.12) we obtain $A_{\alpha}^{-1} B A_{\alpha^{\prime}} g^{t}=A_{\beta}^{-1} C A_{\beta^{\prime}} g^{t}$.
By non-constant of g we have $A_{\alpha}^{-1} B A_{\alpha^{\prime}}=A_{\beta}^{-1} C A_{\beta^{\prime}}$. By $c_{i}^{d}=1, i=1,2,3$, and noting that

$$
\operatorname{det} A_{\alpha} \operatorname{det} A_{\alpha}^{-1}=1, \operatorname{det} A_{\beta} \operatorname{det} A_{\beta}^{-1}=1,
$$

we obtain

$$
\begin{aligned}
(\operatorname{det} B)^{d} & =1,(\operatorname{det} C)^{d}=1, \\
\left(\frac{\operatorname{det} A_{\alpha}}{\operatorname{det} A_{\alpha^{\prime}}}\right)^{d} & =\left(\frac{\operatorname{det} A_{\beta}}{\operatorname{det} A_{\beta^{\prime}}}\right)^{d}, c=\frac{b^{d}}{a^{d}} .
\end{aligned}
$$

a contradiction to the hypothesis $c \neq \frac{b^{d}}{a^{d}}$.

Case 2. $\alpha^{\prime}=(3,2), \beta^{\prime}=(2,1)$. From this and (2.6) we give

$$
L_{1}\left(f_{1}, f_{2}\right)=c_{3} L_{3}\left(g_{1}, g_{2}\right), L_{2}\left(f_{1}, f_{2}\right)=c_{2} L_{2}\left(g_{1}, g_{2}\right),
$$

$$
\begin{equation*}
L_{3}\left(f_{1}, f_{2}\right)=c_{1} L_{1}\left(g_{1}, g_{2}\right) \tag{2.13}
\end{equation*}
$$

By the similar arguments as in Case 1 we obtain a contradiction to the hypothesis $a^{2 d} \neq 1$.
Case 3. $\alpha^{\prime}=(3,1), \beta^{\prime}=(1,2)$. From this and (2.6) we give

$$
\begin{gather*}
L_{1}\left(f_{1}, f_{2}\right)=c_{3} L_{3}\left(g_{1}, g_{2}\right), L_{2}\left(f_{1}, f_{2}\right)=c_{1} L_{1}\left(g_{1}, g_{2}\right), \\
L_{3}\left(f_{1}, f_{2}\right)=c_{2} L_{2}\left(g_{1}, g_{2}\right) \tag{2.14}
\end{gather*}
$$

By the similar arguments as in Case 1 we obtain a contradiction to the hypothesis $c \neq a^{d} b^{d}$.
Case 4. $\alpha^{\prime}=(2,3), \beta^{\prime}=(3,1)$. From this and (2.6) we give

$$
\begin{gathered}
L_{1}\left(f_{1}, f_{2}\right)=c_{2} L_{2}\left(g_{1}, g_{2}\right), L_{2}\left(f_{1}, f_{2}\right)=c_{3} L_{3}\left(g_{1}, g_{2}\right), \\
L_{3}\left(f_{1}, f_{2}\right)=c_{1} L_{1}\left(g_{1}, g_{2}\right)
\end{gathered}
$$

By the similar arguments as in Case 1 we obtain a contradiction to the hypothesis $c \neq \frac{(-1)^{d} b^{d}}{a^{2 d}}$.
Case 5. $\alpha^{\prime}=(1,3), \beta^{\prime}=(3,2)$. From this and (2.6) we give

$$
\begin{gathered}
L_{1}\left(f_{1}, f_{2}\right)=c_{1} L_{1}\left(g_{1}, g_{2}\right), L_{2}\left(f_{1}, f_{2}\right)=c_{3} L_{3}\left(g_{1}, g_{2}\right), \\
L_{3}\left(f_{1}, f_{2}\right)=c_{2} L_{2}\left(g_{1}, g_{2}\right)
\end{gathered}
$$

By the similar arguments as in Case 1 we obtain a contradiction to the hypothesis $c \neq(-1)^{d} b^{d}$.
Case 6. $\alpha^{\prime}=(1,2), \beta^{\prime}=(2,3)$. From this and (2.6) we give

$$
\begin{gathered}
L_{1}\left(f_{1}, f_{2}\right)=c_{1} L_{1}\left(g_{1}, g_{2}\right), L_{2}\left(f_{1}, f_{2}\right)=c_{2} L_{2}\left(g_{1}, g_{2}\right), \\
L_{3}\left(f_{1}, f_{2}\right)=c_{3} L_{3}\left(g_{1}, g_{2}\right) .
\end{gathered}
$$

Since L_{1}, L_{2} are linearly independent, L_{1}, L_{2}, L_{3} are linearly dependent, there exist non-zero constants t_{k} such that

$$
L_{3}=\sum_{k=1}^{2} t_{k} L_{k}, \quad \text { and } L_{3}(\tilde{f})=\sum_{k=1}^{2} t_{k} L_{k}(\tilde{f}), L_{3}(\tilde{g})=\sum_{k=1}^{2} t_{k} L_{k}(\tilde{g})
$$

$$
L_{k}(\tilde{f})=c_{k} L_{k}(\tilde{g}), k=1,2, L_{3}(\tilde{f})=c_{3} L_{3}(\tilde{g})
$$

Thus,

$$
\sum_{k=1}^{2}\left(c_{3}-c_{k}\right) t_{k} L_{k}(\tilde{g})=0
$$

Since f_{1}, f_{2} are linearly independent, it follows that all the c_{i} are equal each to other, say $c_{i}=t$. Then we have $g_{i}=t f_{i}$ for $i=1,2$. Therefore $f=g$.

Now we are going to complete the proof of Theorem 2.1. By $E_{f}(S)=E_{g}(S)$ it is easy to see that there exists an entire function h such that $Q\left(f_{1}, f_{2}\right)=$ $e^{h} Q\left(g_{1}, g_{2}\right)$. Set $l=e^{\frac{h}{d}}$ and $G_{1}=l g_{1}, G_{2}=l g_{2}$. Then $Q\left(f_{1}, f_{2}\right)=Q\left(G_{1}, G_{2}\right)$. By the similar arguments as above we have $\frac{f_{1}}{f_{2}}=\frac{G_{1}}{G_{2}}$. Therefore $f=g$. Theorem 2.1 is proved.

A example of new class of unique range sets for meromorphic functions in Theorem 2.1 is following.

Theorem 2.2. Let $d \in \mathbb{N}^{*}, d \geq 25$ and S be the set of zeros of polynomial $P(z)=z^{d}+(2 z+5)^{d}+1$. Then S is a URSM.
Proof. By $P(z)=z^{d}+(2 z+5)^{d}+1$ we have $a=2, b=5, c=1$. From this it follows that

$$
a, b, c \neq 0, \text { and } c \neq \frac{b^{d}}{a^{d}}, a^{2 d} \neq 1, c \neq a^{d} b^{d}, c \neq \frac{(-1)^{d} b^{d}}{a^{2 d}}, c \neq(-1)^{d} b^{d}
$$

So the condition $\left(A_{1}\right)$ is satisfied. We shall prove that the condition $\left(A_{2}\right)$ is satisfied. Take l is a any zero of $P^{\prime}(z)=d\left(z^{d-1}+2(2 z+5)^{d-1}\right)$. Then

$$
\begin{align*}
& l^{d-1}+2(2 l+5)^{d-1}=0,\left(2+\frac{5}{l}\right)^{d-1}=-\frac{1}{2} . \text { Set } 2+\frac{5}{l}=h . \text { Then } h^{d-1}=-\frac{1}{2}, \\
& l=\frac{5}{h-2},(2 l+5)^{d-1}=-\frac{1}{2} l^{d-1}, l^{d}+(2 l+5)^{d}+1=l^{d}-\frac{1}{2} l^{d-1}(2 l+5)+1 \\
& (2.18) \quad=-\frac{5}{2} l^{d-1}+1=-\frac{5}{2} \frac{5^{d-1}}{(h-2)^{d-1}}+1=-\frac{5^{d}}{2(h-2)^{d-1}}+1 . \tag{2.18}
\end{align*}
$$

Moreover

$$
\begin{gathered}
|h|^{d-1}=\frac{1}{2},|h|=\left(\frac{1}{2}\right) \frac{1}{d-1}, 0<|h-2|^{d-1} \leq(|h|+2)^{d-1} \\
0<|h-2|^{d-1} \leq\left(\left(\frac{1}{2}\right) \frac{1}{d-1}+2\right)^{d-1}=\frac{\left(2.2^{\frac{1}{d-1}}+1\right)^{d-1}}{2} \\
0<2 .|h-2|^{d-1} \leq\left(2.2 \frac{1}{d-1}+1\right)^{d-1}
\end{gathered}
$$

$$
\begin{equation*}
\frac{5^{d}}{2 .|h-2|^{d-1}} \geq \frac{5^{d}}{\left(2.2^{\frac{1}{d-1}}+1\right)^{d-1}}>1 \tag{2.19}
\end{equation*}
$$

Combining (2.18) and (2.19) we get $-\frac{5^{d}}{2(h-2)^{d-1}}+1 \neq 0$. Thus $P(l) \neq 0$. So the condition $\left(A_{2}\right)$ is satisfied.

Now applying Theorem 2.1 to the set of zeros of polynomial $P(z)=z^{d}+$ $(2 z+5)^{d}+1$ we obtain conclusion of Theorem 2.2.

References

[1] Mues, E. and M. Reinders, Meromorphic functions sharing one value and unique range sets, Kodai Math. J., 18 (1995), 515-522.
[2] Gross, F. and C.C. Yang, On preimage and range sets of meromorphic functions, Proc. Japan Acard. Ser. A Math. Sci., 58 (1982), 1-20.
[3] Frank, G. and M. Reinders, A unique range set for meromorphic functions with 11 elements, Complex Variables Theory Appl., 37(1-4) (1998), 185-193.
[4] Fujimoto, H., On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math., 122(6) (2000), 1175-1203.
[5] Ha Huy Khoai, Vu Hoai An and Le Quang Ninh, Uniqueness theorems for holomorphic curves with hypersurfaces of Fermat-Waring type, Complex Anal. Oper. Theory, 8 (2014), 591-794.
[6] Yi, H.X., Unicity theorems for meromorphic or entire functions III, Bull. Austr. Math. Soc., 53 (1996), 71-82.
[7] Masuda, K. and J. Noguchi, A construction of hyperbolic hypersurface of $P^{N}(\mathbb{C})$, Math. Ann., 304 (1996), 339-362.
[8] Hayman, W.K., Meromorphic Functions, Clarendon, Oxford, 1964.

V.H. An and P.N. Hoa

Hai Duong College
Hai Duong Province
Thang Long Institute of Mathematics and Applied Sciences
Ha Noi City
Vietnam
vuhoaianmai@yahoo.com
hphamngoc577@gmail.com

