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Abstract. In this paper, we discuss the uniqueness problem for differential
polynomials (Pn(f))(k), (Qn(g))(k), sharing the same value, where P , Q are
polynomials of Fermat-Waring type, f and g are meromorphic functions
on a non-Archimedean field.

1. Introduction

Let K be an algebraically closed field of characteristic zero, complete for
a non-Archimedean absolute value. We denote by A(K) the ring of entire
functions in K, by M(K) the field of meromorphic functions, i.e., the field of

fractions of A(K), and K̂ = K ∪ {∞}. We assume that the reader is familiar
with the notations in the non-Archimedean Nevanlinna theory (see [18 ]). Let
f be a non-constant meromorphic function on K. For every a ∈ K, define the
function νaf : K → N by

νaf (z) =

{
0 if f(z) �= a

m if f(z) = a with multiplicity m,
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and set ν∞f = ν01
f

. For f ∈ M(K) and S ⊂ K ∪ {∞}, we define

Ef (S) =
⋃
a∈S

{(z, νaf (z)) : z ∈ K}.

Let F be a nonempty subset of M(K). Two functions f, g of F are said to
share S, counting multiplicity, if Ef (S) = Eg(S). Let a set S ⊂ K ∪ {∞}
and f and g be two non-constant meromorphic (entire) functions. If Ef (S) =
= Eg(S) implies f = g for any two non-constant meromorphic (entire) functions
f, g, then S is called a unique range set for meromorphic(entire) functions or,
in brief, URSM(URSE). Several interesting results on URSE and URSM
for non-Archimedean entire and meromorphic functions have been obtained
(see[6], [13], [17] and [18]). The smallest unique range set for meromorphic
functions has 10 elements and was given by Hu and Yang [17]. Recently, many
results were obtained also for differential polynomials, for example, of the form
(fn)(k) (Khoai, An, and Lai [12]; An, Hoa, and Khoai [3]), and of the form
(f)(

′)P
′
(f), (Boussaf, Escassut and Ojeda [5]). In [12] Khoai, An, and Lai

proved the following result.

Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions
on K, and let n, k be two positive integers with n ≥ 3k+8. If (fn)(k) and (gn)(k)

share 1 CM , then f(z) = tg(z) for a constant t such that tn = 1.

In [22] Yang posed the problem: is it true that the equality f−1(S) = g−1(S)
with S = {−1, 1} for polynomials of the same degree f, g implies that either
f = g or f = −g ? This problem was solved in [19] and [20].

In this paper, instead of functions f and g we consider differential operators
of the form (Pn(f))(k), (Qn(g))(k), sharing the same value, where P , Q are
polynomials of Fermat-Waring type. Then we establish an uniqueness theorem
for non-Archimedean meromorphic functions and their differential polynomials.

Concerning the mentioned above problem of Yang, and related topics (see,
for example [20]), we consider the following problem. Let S, T be the zero
sets of polynomials P (z), Q(z), respectively, then how we can say about the
relations of f, g, if Ef (S) = Eg(T )?.

Now let us describe main results of the paper.

Let d,m, n, k ∈ N∗ and a1, b1, c, a2, b2 ∈ K; a1, b1, c, a2, b2 �= 0.

We will let

(1.1) P (z) = zd + a1z
d−m + b1, Q(z) = zd + a2z

d−m + b2,

be polynomials of degree d of Fermat–Waring type in K[z] without multiple
zeros. We shall prove the following theorems.
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Theorem 1. Let f, g be two non-constant meromorphic functions on K and
let P (z), Q(z) be defined in (1.1). Assume that n ≥ 3k + 5, d ≥ 2m + 8 and
either m ≥ 3 or (d,m) = 1 and m ≥ 2. If (Pn(f))(k) and (Qn(g))(k) share

1 CM , then g = hf for a constant h such that hd =
b2
b1
, hnd = 1, hm =

a2
a1

.

Theorem 2. Let f, g be two non-constant meromorphic functions on K and
let P (z), Q(z) be defined in (1.1). Assume that d ≥ 2m + 8 and either m ≥ 3
or (d,m) = 1 and m ≥ 2. If P (f) and Q(g) share 0 CM , then g = hf for a

constant h such that hd =
b2
b1
, hm =

a2
a1

.

As immediate consequences of Theorem 2, we have

Corollary 3. Let S, T be the zero sets of the above polynomials P (z), Q(z),
respectively, and let f, g be two non-constant meromorphic functions on K.
Assume that d ≥ 2m + 8 and either m ≥ 3 or (d,m) = 1 and m ≥ 2. If

Ef (S) = Eg(T ), then g = hf for a constant h such that hd =
b2
b1
, hm =

a2
a1

.

Corollary 4. Let S be the zero sets of the polynomial P (z), and et f, g be
two non-constant meromorphic functions on K. Assume that d ≥ 2m + 8 and
(d,m) = 1 and m ≥ 2. If Ef (S) = Eg(S), then f = g.

2. Lemmas

We assume that the reader is familiar with the notations in the non-Archime-
dean Nevanlinna theory (see [4], [8], [9] and [18]).

We first need the following Lemmas.

Lemma 2.1. ([18]) Let f be a non-constant meromorphic function on K and
let a1, a2, ..., aq, be distinct points of K ∪ {∞}. Then

(q − 2)T (r, f) ≤
q∑

i=1

N1(r,
1

f − ai
) − log r +O(1).

Lemma 2.2. ([18]) Let f be a non-constant meromorphic function on K and
let a1, a2, ..., aq, be distinct points of K ∪ {∞}. Suppose either f − ai has no
zeros, or f − ai has zeros, in which case all the zeros of the functions f − ai
have multiplicity at least mi, i = 1, ..., q. Then

q∑
i=1

(1 − 1

mi
) < 2.
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Lemma 2.3. ([12]) Let f and g be non-constant meromorphic functions on K.
If Ef (1) = Eg(1), then one of the following three cases holds:

1. T (r, f) ≤ N2(r, f) + N2(r,
1

f
) + N2(r, g) + N2(r,

1

g
) − log r + O(1), and

the same inequality holds for T (r, g);

2. fg = 1;

3. f = g.

Lemma 2.4. ([12]) Let f be a non-constant meromorphic function on K and
n, k be positive integers, n > k and a be a pole of f . Then

1. (fn)(k) =
ϕk

(z − a)np+k
, where p = ν∞f (a), ϕk(a) �= 0.

2.
(fn)(k)

fn−k
=

hk

(z − a)pk+k
, where p = ν∞f (a), hk(a) �= 0.

Lemma 2.5. Let f , (f)(k) be non-constant meromorphic functions on K and
k be a positive integer. Then

T (r, (f)(k)) ≤ (k + 1)T (r, f) +O(1).

Proof. By Lemma 2.4, and noting that m(r,
(f)(k)

f
) = O(1) we get

T (r, (f)(k)) = m(r, (f)(k)) +N(r, (f)(k)) ≤
≤ m(r, f) +N(r, f) + kN1(r, f) +O(1) ≤
≤ T (r, f) + kT (r, f) +O(1) = (k + 1)T (r, f) +O(1).

Lemma 2.5 is proved. �

Lemma 2.6. ([12]) Let f be a non-constant meromorphic function on K and
n, k be positive integers, n ≥ k + 1. Then

T (r, f) ≤ T (r, fn)(k)) +O(1),

in particular, (fn)(k) is not a constant.

Lemma 2.7. ([12]) Let f be a non-constant meromorphic function on K and
n, k be positive integers, n > 2k. Then

1. (n − 2k)T (r, f) + kN(r, f) +N(r,
1

(fn)(k)

fn−k

) ≤ T (r, (fn)(k)) +O(1);

2. N(r,
1

(fn)(k)

fn−k

) ≤ kT (r, f) + kN1(r, f) +O(1).
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Lemma 2.8. Let f be a non-constant meromorphic function on K and n, k be
positive integers, n > 2k, and let P (z) be a polynomial of degree d > 0. Then

1. (n−2k)dT (r, f)+kN(r, P (f))+N(r,
1

((P (f))n)(k)

(P (f))n−k

) ≤ T (r, ((P (f))n)(k))+

+O(1) ≤ (k + 1)ndT (r, f) +O(1).

2. N(r, 1

((P (f))n)(k)

(P (f))n−k

) ≤ kdT (r, f) + kN1(r, P (f)) +O(1) =

= kdT (r, f) + kN1(r, f) +O(1) ≤ k(d+ 1)T (r, f) +O(1).

Proof. 1. Set A = ((P (f))n)(k), C = P (f). Then T (r, C) = T (r, P (f)) =
= dT (r, f) + O(1), T (r, Pn(f)) = ndT (r, f) + O(1). Therefore, C,Cn are not
constants. By Lemma 2.6 we see that A = (Cn)(k) is not a constant. On the
other hand, by Lemma 2.7 and Lemma 2.5 we get

(n−2k)T (r, C)+kN(r, C)+N(r,
1
A

Cn−k

) ≤ T (r, A)+O(1) ≤ (k+1)T (r, Cn)+O(1),

i.e.

(n − 2k)dT (r, f) + kN(r, P (f)) +N(r,
1

((P (f))n)(k)

(P (f))n−k

) ≤

≤ T (r, ((P (f))n)(k)) +O(1) ≤ (k + 1)ndT (r, f) +O(1).

2. By Lemma 2.7 we have

N(r,
1
A

Cn−k

) ≤ kT (r, C) + kN1(r, C) +O(1).

On the other hand,

T (r, C) = dT (r, f) +O(1), N1(r, C) = N1(r, f) ≤ N(r, f) ≤ T (r, f) +O(1).

Therefore,

N(r, 1

((P (f))n)(k)

(P (f))n−k

) ≤ kdT (r, f) + kN1(r, P (f)) +O(1) =

= kdT (r, f) + kN1(r, f) +O(1) ≤ k(d+ 1)T (r, f) +O(1).

Lemma 2.8 is proved. �
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Lemma 2.9. Let d ≥ 2m+3 and either m ≥ 3 or (d,m) = 1 and m ≥ 2, c �= 0,
and let P (z), Q(z) be defined by (1). Assume that the equation P (f) = cQ(g)
has a non-constant meromorphic solution (f, g). Then g = hf for a constant

h such that hd =
1

c
=

b2
b1
, hm =

a2
a1

.

Proof. Since P (f) = Q(g) we get

fd + a1f
d−m + b1 = c(gd + a2g

d−m + b2), dT (r, f) +O(1) = dT (r, g),

(2.1) T (r, f) +O(1) = T (r, g).

Equation (2.1) can be rewritten as

f1 + f2 = cb2 − b1, where f1 = fd−m(fm + a1), f2 = −cgd−m(gm + a2).

If cb2 − b1 �= 0, then by Lemma 2.1, we have

T (r, f1) ≤ N1(r, f1) +N1(r,
1

f1
) +N1(r,

1

f1 − (cb2 − b1)
− log r +O(1),

dT (r, f) ≤ N1(r, f) +N1(r,
1

f
) +N1(r,

1

fm + a1
) +N1(r,

1

g
)+

+N1(r,
1

gm + a2
) − log r +O(1),

dT (r, f) ≤ (2m+ 3)T (r, f) − log r +O(1), (d − 2m − 3)T (r, f) ≤
≤ − log r +O(1),

which contradicts to d ≥ 2m+ 3. Hence cb2 − b1 = 0. Thus, (2.1) becomes

(2.2) fd + a1f
d−m = cgd + ca2g

d−m.

For simplicity, set h =
g

f
, and α = 1

c �= 0;β = a1

ca2
�= 0. Then we obtain

fm(chd − 1) = −(ca2h
d−m − a1), fm(hd − α) = −a2(h

d−m − β),

(2.3) fm = −a2
hd−m − β

hd − α
.

Assume that h is not a constant. Consider the following possible cases:

Case 1. m ≥ 2, (m, d) = 1. If hd − α and hd−m − β have no common zeros,
then all zeros of hd − α have multipcities ≥ m. Then

N1(r,
1

hd − α
) ≤ 1

m
N(r,

1

hd − α
).
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By Lemma 2.1 we obtain

T (r, hd) ≤ N1(r, h
d) +N1(r,

1

hd
) +N1(r,

1

hd − α
) − log r +O(1),

dT (r, h) ≤ 2T (r, h) +
1

m
N(r,

1

hd − α
) − log r +O(1) ≤

≤ (2 +
d

m
)T (r, h) − log r +O(1),

(d − 2 − d

m
)T (r, h) ≤ − log r +O(1),

which leads to d(m − 1) < 2m, a contradiction to the condition d ≥ 2m+ 3.

If hd −α and hd−m − β have common zeros, then there exists z0 such that
hd(z0) = α, hd−m(z0) = β. From (2.3) we get

αfm((
h

h(z0)
)d − 1) = −βa2((

h

h(z0)
)d−m − 1).

Since (m, d) = 1, the equations zd − 1 = 0 and zd−m − 1 = 0 have different
roots, except for z = 1. Let ri, i = 1, ..., 2d − m − 2, be all the roots of them.
Then all zeros of h

h(z0)
− ri have multipcities ≥ m. Therefore, by Lemma 2.2

we obtain

(1 − 1

m
)(2d − m − 2) < 2, 2d(m − 1) < m2 + 3m − 2,

which contradicts d ≥ 2m+ 3, m ≥ 2. Thus, h is a constant.

Case 2. m ≥ 3. Note that equation zd − α = 0 has d simple zeros, equation
zd−m − β = 0 has d−m simple zeros. Then zd −α = 0, zd−m − β = 0 have at
most d − m common simple zeros. Therefore, the equation zd − α = 0 has at
least m distinct roots, which are not roots of zd−m−β = 0. Let r1, r2, ..., rm be
all these roots. Then all zeros of h − rj , j = 1, ...,m, have multiplicities ≥ m.
By Lemma 2.2 we have m(1 − 1

m ) < 2. Therefore, m < 3. From m ≥ 3, we
obtain a contradiction. Thus h is a constant. �

3. Proof of main resutls

3.1. Proof of Theorem 1. We have

P (f) = (f − e1) · · · (f − ed), ei ∈ K, ei �= 0,

(P (f))n = (f − e1)
n · · · (f − ed)

n,

Q(g) = (g − k1)...(g − kd), ki ∈ K, ki �= 0,

(Q(g))n = (g − k1)
n...(g − kd)

n.
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Set

A = ((P (f))n)(k), B = ((Q(g))n)(k), C = P (f),

D = Q(g), F =
A

Cn−k
, Q =

B

Dn−k
.

Then
C = (f − e1) · · · (f − ed), D = (g − k1) · · · (g − kd),

A = (Cn)(k) = FCn−k, B = (Dn)(k) = QDn−k.

Applying Lemma 2.3 to (Cn)(k), (Dn)(k) we have one of the following pos-
sibilities:

Case 1.

T (r, A) ≤ N2(r, A) +N2(r,
1

A
) +N2(r,B) +N2(r,

1

B
) − log r +O(1),

T (r,B) ≤ N2(r, A) +N2(r,
1

A
) +N2(r,B) +N2(r,

1

B
) − log r +O(1).

We see that, if a is a pole of A, then C(a) = ∞ with ν∞A (a) ≥ n + k ≥ 2.
Therefore,

N1(r, C) = N1(r, (f − e1)...(f − ed)) = N1(r, f) ≤ T (r, f) +O(1),

N1(r,
1

C
) =

d∑
i=1

N1(r,
1

f − ei
) ≤ dT (r, f) +O(1),

N2(r, A) = 2N1(r, C) ≤ 2T (r, f) +O(1),

N2(r,
1

A
) ≤ N2(r,

1

Cn−k
) +N(r,

1

F
) = 2N1(r,

1

C
) +N(r,

1

F
) ≤

≤ 2dT (r, f) +N(r,
1

F
) ≤ 2dT (r, f) + kN1(r, C)+

+ kdT (r, f) +O(1) = d(k + 2)T (r, f) + kN1(r, C) +O(1).

Similarly,

N2(r,B) ≤ 2T (r, g) +O(1),

N2(r,
1

B
) ≤ 2dT (r, g) +N(r,

1

Q
) ≤ d(k + 2)T (r, g) + kN1(r,D) +O(1).

Combining the above inequalities, we get

T (r, A) ≤ (2+2d+kd)T (r, f)+(2+2d)T (r, g)+kN1(r, C)+N(r,
1

Q
)−log r+O(1),
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T (r,B) ≤ (2+2d+kd)T (r, g)+(2+2d)T (r, f)+kN1(r,D)+N(r,
1

F
)−log r+O(1).

T (r, A) + T (r,B) ≤ (4 + 4d+ kd)(T (r, f) + T (r, g)) + kN1(r, C)+

+N(r,
1

Q
) + kN1(r,D) +N(r,

1

F
) − 2 log r +O(1).

By Lemma 2.8 we obtain

(n − 2k)dT (r, f) + kN(r, C) +N(r,
1

F
) ≤ T (r, A) +O(1),

(n − 2k)dT (r, g) + kN(r,D) +N(r,
1

Q
) ≤ T (r,B) +O(1).

Thus,

(n − 2k)d(T (r, f) + T (r, g)) + kN(r, C) +N(r,
1

F
) + kN(r,D) +N(r,

1

Q
) ≤

≤ T (r, A) + T (r,B) +O(1),

(n − 2k)d(T (r, f) + T (r, g)) + kN(r, C) +N(r,
1

F
) + kN(r,D) +N(r,

1

Q
) ≤

≤ (4 + 4d+ kd)(T (r, f) + T (r, g)) + kN1(r, C) +N(r,
1

Q
)+

+kN1(r,D) +N(r,
1

F
) − 2 log r +O(1).

Therefore,

(n− 2k)d(T (r, f) + T (r, g)) ≤ (4 + 4d+ kd)(T (r, f) + T (r, g))− 2 log r+O(1),

((n − 2k)d − 4 − 4d − kd)(T (r, f) + T (r, g)) ≤ −2 log r +O(1).

Since n ≥ 3k + 5 > 2k + 4+4d+kd
d , we obtain a contradiction.

Case 2. (P (f))n)(k) ((Q(g))n)(k) = 1. Then we have

C = P (f) = (f − e1) · · · (f − ed), (C
n)(k) = Cn−kF,D = Q(g).

Therefore

(f − e1)
n−k · · · (f − ed)

n−k.F.(Dn)(k) = (Cn)(k)(Dn)(k) = 1.

Because n ≥ 3k + 5 we see that, if z0 is a zero of f − ei with 1 ≤ i ≤ d, then
z0 is a zero of C, and therefore, z0 is a zero of (Cn)(k), and then z0 is a pole
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of (Dn)(k) and ν ∞
(Dn)(k)(z0) = (n − k)νeif (z0). Thus, z0 is a pole of g, and by

Lemma 2.4 we get

ν ∞
(Dn)(k)(z0) = ndν ∞

g (z0) + k ≥ nd+ k.

So νeif (z0) =
ndν ∞

g (z0)+k

n−k ≥ nd+k
n−k , i = 1, 2, . . . , d. Applying Lemma 2.2, we

obtain:
d∑

i=1

(1 − n − k

nd+ k
) < 2.

From this we have n(d2 − 3d) < 2k(1− d), and so we obtain a contradiction to
d ≥ 12.

Case 3. ((P (f))n)(k) = ((Q(g))n)(k). Then (P (f))n − s = (Q(g))n, where s is
a polynomial of degree < k . We prove s ≡ 0. If it is not the case, then

((P (f))n

s
− 1 =

(g − k1)
n · · · (g − kd)

n

s
,

(g − k1)
n · · · (g − kd)

n

s
+ 1 =

(f − e1)
n · · · (f − ed)

n

s
.

SetH = Cn

s , G = Dn

s . Since f, g are not constants, and so are C,D,Cn, Dn, H,G.
Applying Lemma 2.1 to H with values ∞, 0, 1, we get

T (r,H) ≤ N1(r,H) +N1(r,
1

H
) +N1(r,

1

H − 1
) − log r +O(1).

On the other hand,

T (r, Cn) = nT (r, C)+O(1) ≤ T (r,H)+T (r, s) ≤ T (r,H)+(k−1) log r+O(1),

nT (r, C)−(k−1) log r ≤ T (r,H)+O(1), ndT (r, f)−(k−1) log r ≤ T (r,H)+O(1).

N1(r,H) ≤ N1(r, C
n)+N1(r,

1

s
) ≤ N1(r, f)+(k−1) log r ≤ T (r, f)+(k−1) log r,

N1(r,
1

H
) ≤ N1(r,

1

Cn
) = N1(r,

1

C
) ≤ T (r, C) +O(1) = dT (r, f) +O(1),

N1(r,
1

H − 1
) = N1(r,

1

G
) ≤ N1(r,

1

Dn
) = N1(r,

1

D
) ≤ T (r,D)+O(1) = dT (r, g)

+O(1), ndT (r, f)−(k−1) log r ≤ T (r, f)+(k−1) log r+d(T (r, f)+T (r, g))+O(1).

From this, and noting that log r ≤ T (r, f), we get

(nd − 2(k − 1))T (r, f) ≤ T (r, f) + d(T (r, f) + T (r, g)) +O(1).
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Applying Lemma 2.1 to G with values ∞, 0,−1, and noting that log r ≤ T (r, g)
we obtain

T (r,G) ≤ N1(r,G) +N1(r,
1

G
) +N1(r,

1

G+ 1
) − log r +O(1),

ndT (r, g)−(k−1) log r ≤ T (r, g)+(k−1) log r+d(T (r, f)+T (r, g))−log r+O(1),

(nd − 2(k − 1))T (r, g) ≤ T (r, g) + d(T (r, f) + T (r, g)) − log r +O(1).

So

(nd − 2(k − 1))(T (r, f) + T (r, g)) ≤ T (r, f) + T (r, g) + 2d(T (r, f) + T (r, g))−
−2 log r +O(1),

(nd − 2d − 2k + 1))(T (r, f) + T (r, g)) + 2 log r ≤ O(1).

We obtain a contradiction to n ≥ 3k + 5 > 2d+2k−1
d . So s = 0. Then

(P (f))n = (Q(g))n. Therefore, P (f) = cQ(g), cn = 1. From this and by
Lemma 2.9, we obtain the conclusion of Theorem 1. �

3.2 Proof of Theorem 2. Set

C = P (f) = fd + a1f
d−m + b1, D = Q(g) = gd + a2g

d−m + b2,

M = −fd−m(fm + a1)

b1
, N = −gd−m(gm + a2)

b2
.

Since P (f) and Q(g) share 0 CM, we get EM (1) = EN (1). Applying Lemma
2.3 to M,N, we have one of the following possibilities:

Case 1.

T (r,M) ≤ N2(r,M) +N2(r,
1

M
) +N2(r,N) +N2(r,

1

N
) − log r +O(1),

T (r,N) ≤ N2(r,M) +N2(r,
1

M
) +N2(r,N) +N2(r,

1

N
) − log r +O(1).

Moreover,

T (r,M) = dT (r, f) +O(1) N1(r,M) = N1(r, f) ≤ T (r, f) +O(1),

N2(r,M) = 2N1(r, f) ≤ 2T (r, f) +O(1),

N2(r,
1

M
) ≤ 2N1(r,

1

f
) +N2(r,

1

fm + a1
) ≤ 2T (r, f) +mT (r, f) +O(1).

Similarly

N2(r,N) ≤ 2T (r, g) +O(1), N2(r,
1

N
) ≤ 2T (r, g) +mT (r, g) +O(1).
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Therefore,

T (r,M) = dT (r, f)+O(1) ≤ 4(T (r, f)+T (r, g))+m(T (r, f)+T (r, g))−log r+O(1).

Similarly

T (r,N) = dT (r, g)+O(1) ≤ 4(T (r, f)+T (r, g))+m(T (r, f)+T (r, g))−log r+O(1).

Combining the above inequalities we get

d(T (r, f)+T (r, g)) ≤ 8(T (r, f)+T (r, g))+2m(T (r, f)+T (r, g))−2 log r+O(1),

(d − 2m − 8)(T (r, f) + T (r, g)) + 2 log r ≤ O(1).

We obtain a contradiction to d ≥ 2m+ 8.

Case 2. M.N = 1, i.e. fd−m(fm + a1)g
d−m(gm + a2) =

b1
b2
.

Note that equation zm + a1 = 0 has m simple zeros. Let r1, r2, ..., rm be all
these roots.Therefore

(3.1) fd−m(f − r1)...(f − r1)g
d−m(gm + a2) =

b1
b2
.

From (3.1) it follows that all zeros of f − rj , j = 1, ...,m, have multiplicities
≥ d, and all zeros of f have multiplicities ≥ d

d−m . By Lemma 2.2 we have

1− d − m

d
+m(1− 1

d
) < 2. Then m < 2. Since m ≥ 2, we obtain a contradiction.

Case 3. M = N, i.e. fd−m(fm+a1)
b1

= gd−m(gm+a2)
b2

. Then

(3.2) fd + a1f
d−m + b1 =

b1
b2
(gd + a2g

d−m + b2).

Applying Lemma 2.9 to (3.2), we obtain we obtain the conclusion of Theo-
rem 2. �

3.3 Proof of Corollary 3. Since P (z), Q(z) have no multiple zeros, we see
that Ef (S) = Eg(T ) if and only if P (f) and Q(g) share 0 CM . From this and
Theorem 2, we obtain the conclusion of Corollary 3. �

3.4 Proof of Corollary 4. By Ef (S) = Eg(S) and Corollary 3, we obtain

g = hf for a constant h, such that hd =
b2
b1
, hm =

a2
a1

with b1 = b2, a1 = a2.

Therefore, hd = 1 and hm = 1. Because (d,m) = 1 we have h = 1. So f = g. �
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