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Abstract. In this paper, we are going to study the expected number
of curve orders during the downrun part of the elliptic curve primality
proving algorithm, when the applied negative fundamental discriminants
are smooth.

1. Introduction

During the elliptic curve primality proving algorithm one proves the pri-
mality of a probable prime n = n0 by recursively computing the monotone
decreasing sequence of n1, . . . , nk probable primes, until nk is small enough
that its primality can be shown easily. The details and an exact implementa-
tion can be read in [1]. The running time of this algorithm is investigated by
many, and in [3] the authors reduced the heuristic running time to o(ln4 n).

The part when one computes the decreasing sequence is called the downrun.
During the step when we calculate ni+1 from ni, the algorithm tries to obtain
elliptic curve orders with the aid of D negative fundamental discriminants.

First, one verifies the validity of

(1.1) (D|ni) = 1 and (ni|p) = 1
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for every p prime factor of a given D. Then we obtain the elliptic curve orders
by reducing a binary quadratic form which is computed from this discriminant
D. The probability of success is driven by the h(D) class number of D. So the
expected number of curve orders in a step can be calculated with

(1.2)
∑

−d(ni)≤D≤−7

1

h(D)

where d(ni) is a limit which depends on ni. The authors of [3] ask the question
that what kind of asymptotic behaviour is shown by this sum, when the D
numbers are smooth and they satisfy the (1.1) requirements. First, we state
the following.

Proposition 1. For every ε > 0 there exist c1, c2 positive constants such that,
for every large enough d one has

c1d
1
2−ε ≤

∑
−d≤D≤−7

1

h(D)
≤ c2d

1
2+ε,

where D runs over the set of negative fundamental discriminants.

The sought result is that for some c < 1/2, the (1.2) sum is close to
√

d(ni)
when the summation runs through the d(ni)

c-smooth negative fundamental
discriminants, or at least for c = 1/2. For this, we state the following.

Proposition 2. Proposition 1 still holds when D runs over the dδ-smooth
negative fundamental discriminants, where δ > 0.

Another dominating factor during a step of the downrun part is the com-
putation of the modular square-root of D. Here, instead of taking the modular
square-root of D, we take the modular square-root of its prime factors, and
compute the actual modular square-root using multiplications. With every
prime factor, our chances are doubled. Let us denote the number of prime
divisors of a natural number n with ω(n).

Proposition 3. There exists a constant c > 0, such that

c
√
d ≤

∑
−d≤D≤−7

2ω(|D|)

h(D)
,

when d tends to +∞, and D runs over the set of negative fundamental discrim-
inants.

Of course, this sum is trivially bounded by 2d, because every D can give us
two curve orders. Obtaining a non-trivial upper bound, or a generalisation to
smooth discriminants here is still a problem.
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Further research is required for incorporating (1.1) requirements into these
sums. One could read about the experimental behaviour of the sum with these
requirements in [7].

2. Proofs

For our proofs, we are going to need the following lemma, which reduces
the counting of fundamental discriminants back to the counting of square-free
numbers. Let us denote the set of positive square-free numbers with Q.

Lemma 1. For a > 0 we have ∑
−a≤D

1 ≥
∑
n∈Q
n≤ a

4

1

where D runs over the set of negative fundamental discriminants.

Proof of Lemma 1. According the definition of fundamental discriminants,
D is a fundamental discriminant if

• D ≡ 1 (mod 4) and D is square-free, or

• D = 4m where m ≡ 2, 3 (mod 4) and m is square-free.

Relying on this, for D negative fundamental discriminants∑
−a≤D

1 =
∑
n∈Q
n≤a

−n≡1(4)

1 +
∑
n∈Q
n≤ a

4

−n≡2,3(4)

1 ≥
∑
n∈Q
n≤ a

4

1. �

Proof of Proposition 1. Using the connection between the class numbers
and the L-functions (see Proposition 5.3.12 in [5]), for every D negative funda-
mental discriminant, according [2] we have h(D) ∈ O(

√|D| ln |D|), further-
more assuming the generalised Riemann hypothesis, according [8] we have
h(D) ∈ O(

√|D| ln ln |D|), so

h(D) ∈ O(|D| 12+ε)

for every ε > 0. Using this,∑
−d≤D≤−7

1

h(D)
≥

∑
−d≤D≤−7

1

cε|D| 12+ε
≥ 1

cεd
1
2+ε

∑
−d≤D≤−7

1,
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where cε > 0 depends on ε. According [10], the asymptotic number of square-
free numbers less than or equal to x is 6xπ−2 +O(

√
x). Applying Lemma 1 on

the sum and using this result, we get our lower bound.

For the upper bound, according the results of [12], for every ε > 0, there

exists a cε positive constant such cε|D| 12−ε < h(D) holds. Now for 0 < ε < 1
2

one has ∑
−d≤D≤−7

1

h(D)
≤

∑
−d≤D≤−7

1

cε|D| 12−ε
≤ 1

cε

∫ d

6

1

x
1
2−ε

dx,

which gives us our upper bound after integration. �

Proof of Proposition 2. The proven upper bound in Proposition 1 will still
hold for smooth negative fundamental discriminants. For the lower bound, we
are going to use the following result. For large enough x, the count of xδ-smooth
square-free numbers in the [x . . . x+ x

1
2+ε] interval is

Ω

(
x

1
2+ε

ln�δ
−1�+1 x

)
,

where 0 < ε < 1
2 and δ > 0, according to [4].

Assume that d is large enough, that the mentioned theorem is valid for
x ≥ √

d ≥ 2. Then in the[
d

2i
. . .

d

2i
+

(
d

2i

) 1
2+ε

]
⊆

[
d

2i
. . .

d

2i−1

] (
i = 1, 2, . . . ,

⌊
log2 d

2

⌋)

intervals the count of
(

d
2i

)δ
-smooth square-free numbers is at least

c
d
2i

ln�δ
−1�+1 d

2i

.

Now if D runs over the dδ-smooth negative fundamental discriminants, then

∑
−d≤D≤−7

1 ≥ c

� log2 d
2 �∑

i=1

d
2i

ln�δ
−1�+1 d

2i

≥ c
d

ln�δ
−1�+1 d

� log2 d
2 �∑

i=1

1

2i
,

where the later sum is less than 1 and greater than 1
2 , so∑

−d≤D≤−7

1 ≥ c

2

d

ln�δ
−1�+1 d

.
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If we follow the method in the proof of Proposition 1, but substituting this
result instead of the asymptotic number of square-free numbers, we get our
lower bound. �

For the proof of Proposition 3 we will need the following lemma.

Lemma 2. For an a > 0 positive number∑
−a≤D

2ω(|D|) ≥
∑
n∈Q
n≤ a

4

2ω(n)

where D runs over the set of negative fundamental discriminants.

Proof of Lemma 2. As in the proof of Lemma 1, we separate the sum
according the definition of fundamental discriminants. So∑

−a≤D

2ω(|D|) =
∑
n∈Q
n≤a

−n≡1(4)

2ω(n) +
∑
n∈Q
n≤ a

4

−n≡2(4)

2ω(4n) +
∑
n∈Q
n≤ a

4

−n≡3(4)

2ω(4n) =

=
∑
n∈Q
n≤a

−n≡1(4)

2ω(n) +
∑
n∈Q
n≤ a

4

−n≡2(4)

2ω(n) + 2
∑
n∈Q
n≤ a

4

−n≡3(4)

2ω(n) ≥
∑
n∈Q
n≤ a

4

2ω(n). �

Proof of Proposition 3. When x tends to +∞, according to [11] and [6] one
has ∑

n∈Q
n≤x

zω(n) = xG(z)(lnx)z−1 +O(x(lnx)�z−2),

with an arbitrary z complex number and

G(z) =
1

Γ(z)

∏
p

(
1 +

z

p

)(
1 − 1

p

)z

,

where p in the product runs over the set of prime numbers. Using this result
and Lemma 2, when d is large enough, we get

∑
−d≤D≤−7

2ω(|D|) ≥
∑
n∈Q
n≤ d

4

2ω(n) − 12 ≥ d

4
G(2) ln

d

4
− c1

d

4
− 12
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where G(2) is a positive constant [9], and c1 ∈ R is for handling the asymp-
totic part of the cited result. Recalling the mentioned results in the proof of
Proposition 1, we have such c2 > 0 that

∑
−d≤D≤−7

2ω(|D|)

h(D)
≥ c2√

d ln d

∑
−d≤D≤−7

2ω(|D|).

Substituting the estimation for the sum, we get that the right hand side is
greater than

G(2)
c2
4

√
d

(
1 − ln 4

ln d

)
−

√
d
c1c2
4 ln d

− 12
c2√
d ln d

which gives us our lower bound. �
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