Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017) 215-222

ON OPTIMAL UNIT FRACTION BIN PACKING

Zsolt Németh (Budapest, Hungary)

Dedicated to the memory of Antal Ivdnyi

Communicated by Ferenc Schipp

(Received June 17, 2017; accepted July 20, 2017)

Abstract. In this paper, we consider a variant of the classical bin packing
problem, called unit fraction bin packing (UFBP), where all item sizes are
unit fractions. It turns out that the number of bins used by an optimal
packing in UFBP is very close to the sum of item sizes. We investigate
the relations between these two values, and give a polynomial time optimal
algorithm for some cases.

1. Introduction

In the classical bin packing problem, given a sequence a := (a)X_; of length
L € Nt := {1,2,...} of item sizes aj,as2,...,ar, where 0 < a; < 1 for all
i = 1,2,...,n. The goal is to pack these items in unit sized bins using as
few as possible such that the total size of items packed in one bin does not
exceed 1. Regarding computational complexity, finding the necessary, but also
sufficient (referred to as optimal later) number of bins is NP-hard, and the
decision problem — deciding if the objects will fit into a specified number of
bins — is NP-complete [7].

The problem is closely related to some operational research problems (e.g.
cutting stock and knapsack problems), and also to many scheduling problems

Key words and phrases: Bin packing, unit fraction bin packing, optimal algorithm, first fit.
2010 Mathematics Subject Classification: 68Q17, 68R05.



216 7Zs. Németh

in information theory, like multiprocessor scheduling [4] and virtual machine
memory scheduling [9].

We note that in many cases, instead of finding an optimal solution, simple
heuristic algorithms like first fit and best fit are applied to either the original
or the sorted (decreasing) sequence of object sizes. The performance of these
methods compared to an optimal one is widely investigated, see e.g. [10], [2]
and [3].

A variant of the classical problem is the unit fraction bin packing problem
(or UFBP), in which all item sizes are unit fractions, i.e. of the form + for
some k € NT. It turns out that this case is connected to the so called windows
scheduling problem [1], [5]. While the complexity class of finding an optimal
packing is unknown, we will see that in most comparisons the UFBF problem

behaves more nicely than the classical problem.

Let us introduce the notation

L
S(a) := Z a;

for the total size of objects, and H(a) := [S(a)]. For an algorithm A, we will
denote the number of bins used by the algorithm for a sequence a by A(a).
Specially, the number of bins used by an optimal algorithm for a is OPT(a).
It is clear that H(a) < OPT(a) for arbitrary a.

It is known [6] that for the bin packing problem, OPT(a) < 2H(a) — 1
for any a, and there exists a sequence for which the equation holds. So the
difference between the total size of objects and the total volume of used bins can
be quite large. On the other hand, for UFBP the inequality OPT(a) < H(a)+1
was proved by Bar-Noy et al. [1]. In the same paper, they also showed that some
well-known heuristic approaches have much better asymptotical properties for
UFBP. In fact, for the so-called first fit decreasing (FFD) algorithm, we have
OPT(a) < FFD(a) < H(a) + 1. Note that FFD is not an optimal algorithm,

171 11711

e.g. letting a = (5, 3,3, 1, 1, 1), one can see that an optimal packing uses 2

bins while F'/F'D uses 3.

Now it is clear that for any sequence a, OPT(a) is either H(a) or H(a)+ 1.
In this paper, we investigate conditions under which OPT'(a) = H(a) holds. We
will show that if the difference of S(a) and H(a) surpasses a certain threshold,
this equation holds regardless of a. In these cases, a simple polynomial time
optimal packing algorithm can be given.



Unit fraction bin packing 217

2. Preliminary results

First, we observe that the theoretical bound given in [1], i.e. for any sequence
a we have OPT(a) < H(a) + 1, is sharp.

Theorem 2.1. There exists a sequence a of item sizes, such that OPT(a) =
=H(a)+1.

Proof. Let a = (%, %, %, %, %, %, %) For this sequence we have H(a) = 2. The
object of size % can be packed either with an % or two %—s. In both cases
the sum of the remaining sizes is greater than 1, so one additional bin is not

sufficient. Consequently OPT(a) = 3. [

We note that in this counterexample, the sum of sizes S(a) = % is relatively

close to H(a) = 2.

Next, we prove that if the difference of S(a) and H(a) is large enough,
H(a) = OPT(a) must hold.

Theorem 2.2. For any sequence a, if S(a) < H(a)—1, then OPT(a) = H(a).

Proof. Indirectly, suppose that there exists at least one sequence which is a
counterexample to our claim. Consider the ones having the least possible H(a)
value, and among these having the minimal number of items. Denote such a
sequence by a. Obviously 1 ¢ a, or the example is not minimal.

Let m = min a be the smallest object size in a. Now if we remove an item of
size m from the sequence, then the resulting sequence b can be packed into at
most H(a) bins. Indeed, either H(b) = H(a) — 1 holds for b, so its elements fit
into H (a) bins, or H(b) = H(a) and S(b) < H(b)— 3, so bfits into H(b) = H(a)
bins by the minimality of a. Now the removed item m cannot be fitted into
any of these bins, otherwise a is not a counterexample. Hence, the sum of item
sizes must be greater than 1 — m in each bin.

Consequently we have

1 1/2
(2.1) H(a)~(1—m)+m<S(a)§H(a)—§ & m>H(a§—1'
Since m is the minimal item size in a, the rightmost fraction actually estimates
every element of the sequence — they are unit fractions with denominator less

H(a)—1
than /2

Using this bound and the minimality of a, we will deduce an upper bound
on S(a). Notice that, since a has minimal number of items, there cannot be
more than one item of size ﬁ, k € NT: otherwise just replace two of these by a




218 7Zs. Németh

single + =, and We have a smaller counterexample. Similarly, @ can have at most
2k items of 2k+1 size for any k € N*, otherwise remove 2k + 1 of those and we
have a counterexample for smaller total size. Consequently

H(a)—1

H(a
1 2%—2 1 1 3
(2.2) <3+ E (%_1 ) 3+ E L=H(a)~ 3.

=2
But, by definition, S(a) > H(a) — 1, contradicting the above inequality. |
In the next section we are going to tighten this result, eventually obtaining

Theorem 2.3. If S(a) < H(a) — 33 holds for a, then OPT(a) = H(a).
3. Further improvements

In this section, we are looking for ways to improve the previous result. It
is clear that there exists ¢y > 0, such that the statement

Proposition 3.1. If S(a) < H(a) — ¢ holds for a, then OPT(a) = H(a).

holds for every ¢ > ¢g, and for ¢ < ¢y there are counterexamples. Note that
Theorem 2.1 and 2.2 implies that ¢ is between = 55 and 1 . Better upper bounds
for ¢g follow in this section.

For a given value of ¢, we may prove this the same way as Theorem 2.2 if
we meet certain requirements. Notice that the proof has two main ingredients,
depending on c. First, in order to have a minimal counterexample a, the item
sizes must be bounded: similarly to (2.1), for the minimal element m now we
have

(3.1) H()-(1-m)+m< S(a)<H(a)—c < m>ﬁ.

So the denominators in a must be smaller than H(“c)_l.

The other main ingredient was the upper estimation for S(a), based on the
minimal element. Our initial approach to obtain (2.2) can be improved for a
better result: for any k& € NT, a can have at most d(k) — 1 items of size 1,
where d(k) denotes the smallest divisor of k greater than 1. Otherwise, we

d(k) (

could replace d(k) pieces of 1 + by a single unit fraction) item.

So we have

1

m d(k) _ 1

< § bk S

— k )
k=2



Unit fraction bin packing 219

and now we are able to finish the proof if ¢ is such a value that

if@%igH@_1
k=2

1

holds for every a and m satisfying (3.1), thus contradicting S(a) > H(a) — 1.
We are going to find the minimal ¢ value for this.

Let us introduce the notation

G(n) = Z %

k=2

Denote by n(H) the largest integer n such that G(n) < H —1. For any minimal
counterexample sequence a with minimal value at most %,
1 c

n” H@ -1

must hold. Letting n%‘_l = ﬁ gives ¢ = Hfﬁgfl, a sufficient ¢ value for the
given H(a).

Now to obtain a value of ¢ satisfying these conditions for every H(a),
we should choose it to be the supremum of the expression % over all
H=H(a)>2.

Lemma 3.1.
H-1 3
sup ———— = —.
e n(H)+1 7
Proof. We show that if H is large enough, the argument tends to zero. Denot-
ing the greatest divisor of k other than itself by e(k), it is clear that e(k) = 1

for prime k, and e(k) > Vk otherwise. So, denoting the number of primes less
than or equal to n by m(n),

n n

G(n) = Z d(kl_ ! < Z e(lk) < 7m(n) —i—Z Lk:’

k=2 k=2

and it can be proved by induction that

> =<2y

k=2

Si-

n

It is known [8] for the number of primes function that

n
1.25506 ——
m(n) < 1.25506 —.



220 7Zs. Németh

so we have

G(n) < 1.25506—— + 2y/n.

Inn
By the definition of n(H) we have G(n(H)) < H —1 < G(n(H) + 1).
Consequently
H-1 _G(H)+1) 125506 2
n(H)+1~ n(H)+1 Inn(H) n(H)

(3.2)

The right hand side is strictly decreasing, tending to 0 as H — +oo (son(H) —
— +00).

To find the supremum, we used a computer program to evaluate %
starting at H = 2. We keep track of the greatest encountered value, and stop
when the upper bound given by (3.2) falls below this value. At this point we
have the supremum, which is % in our case. |
Corollary 3.1. If S(a) < H(a) — 2 holds for a, then OPT(a) = H(a).

In fact, one may further enhance this result by noting that in a minimal

counterexample, there cannot be items of sizes i and % at the same time,

3
because then we could replace them by a single % More generally, we can see
that a minimal counterexample cannot have a subsequence of items with the

total size being a unit fraction itself.

Another possible improvement can be made by observing that for smaller
values of H(a), there are very few candidates for a minimal counterexamples,
so one may generate them and find the optimal packing for these cases.

Without further discussion, we state that after brute-forcing the optimal
packing for the possible sequences with H(a) < 10, and a few additional tricks
to avoid some unit fraction sums, we have

Proposition 3.2. If S(a) < H(a) — 32 holds for a, then OPT(a) = H(a).

4. An optimal algorithm for OPT (a) = H(a)

In this section, we give a simple, polynomial time optimal algorithm for
sequences a satisfying S(a) < H(a) — % Let us consider the algorithm making
the following two steps.

1) First, we reduce the input sequence a to a new one, which is a candidate
for being a counterexample in the ¢ = % case. Such a sequence contains a unit

fraction £, k € NT at most d(k) — 1 times.



Unit fraction bin packing 221

For this, we rearrange the items in increasing order, and, starting from the
smallest, we count the ones having the same size. If at any point the number
of + items reaches d(k), we remove these d(k) items and insert a single @
item (indicating that those d(k) items should be packed together), keeping the
increasing ordering. When we reach the end of the sequence, we pack every

item of size 1 to separate bins, removing them from the sequence.

This way, since we never insert a smaller item then the ones currently being
removed, we only have to process the sequence a single time to reduce the
amount of % items to at most d(k) — 1. Denote this new sequence by b. Since
we only removed items of size 1, S(b) < H(b) — 2 must hold.

2) By the proof of Corollary 3.1, we know that items of sizes > % have
total size less than H(b) — 1, meaning that first fit decreasing (FFD) will pack

them into at most H(b) bins (see Introduction).

Now the smaller items can be packed into any of these H(b) bins where
they fit. Indeed, if there is one of size m’ which cannot be packed, it implies
that for the total size
3

H(b)(1 —m') +m' < S(b) §H(b)f?,

consequently m’ > %, a contradiction.

So we proved that the sequence b can be packed into at most H (b) bins using
the FFD algorithm, obtaining an optimal packing for the original sequence a.

Using a similar idea, an optimal algorithm may be constructed for the case

S(a) < H(a) — 0.

References

[1] Bar-Noy, A., R.E. Ladner and T. Tamir, Windows Scheduling as
a Restricted Version of Bin Packing, ACM Transactions on Algorithms,
3(3) (2007), Article No. 28.

[2] Désa, Gy., The tight bound of First Fit Decreasing bin-packing algo-
rithm is FFD(I) < (11/9)OPT(I) + 6/9, in: Chen, Bo; Paterson, Mike;
Zhang, Guochuan: Combinatorics, Algorithms, Probabilistic and Ezxperi-
mental Methodologies, Springer Berlin Heidelberg, 2007, pp. 1-11.

[3] Désa, Gy. and J. Sgall, First Fit bin packing: A tight analysis, in:
30th International Symposium on Theoretical Aspects of Computer Science
(STACS 2013), Dagstuhl, Germany, 2013, pp. 538-549.



222

Zs. Németh

[4]

[10]

Garey, M.R. and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Company,
1979, p. 238.

Han X., C. Peng, D. Ye, D. Zhang and Y. Lan, Dynamic bin
packing with unit fraction items revisited, Information Processing Letters,
110(23) (2010), 1049-1054.

Ivanyi, A., Performance bounds for simple bin packing algorithms, Ann.
Univ. Sci. Budapest. Sect. Comput., 5 (1984), 77-82.

Korte, B. and J. Vygen, Bin-Packing, in: Combinatorial Optimization:
Theory and Algorithms. Algorithms and Combinatorics Vol. 21, Springer
Berlin Heidelberg, 2006, pp. 426-441.

Rosser, J.B. and L. Schoenfeld, Approximate formulas for some func-
tions of prime numbers, Illinois J. Math., 6 (1962), 64-94.

Sindelar, M., R. Sitaraman and P. Shenoy, Sharing-Aware Algo-
rithms for Virtual Machine Colocation, if: Proceedings of 23rd ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), San Jose,
CA, June 2011, ACM, 2011, pp. 367-378.

Yue, M., A simple proof of the inequality FFD(L) < 11/9 OPT(L) + 1,
VL for the FFD bin-packing algorithm, Acta Mathematicae Applicatae
Sinica, 7(4) (1991), 321-331.

Zs. Németh

Department of Numerical Analysis
Eo6tvos Lorand University

H-1117 Budapest

Pazmany Péter sétany 1/C
Hungary

birkaO@gmail.com





