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Abstract. Using the relation between the Poincaré and the Cayley–Klein
models of hyperbolic geometry, and the congruence transformations on
these models (closely related to Blaschke functions), we present a new
hyperbolic implementation of Nelder–Mead simplex method, and construct
novel complete orthonormal systems on the disk based on Zernike and
Blaschke functions.

1. Introduction

In this paper we construct orthogonal systems on the disk starting from
Zernike functions [3, 15, 24]. Blaschke functions play an important role in
the construction. These functions can be identified with the congruence trans-
formations on the Poincaré disk model of the Bolyai–Lobachevsky hyperbolic
geometry [20, 21]. There is a simple map between the Poincaré model and
the Cayley–Klein model. This relation enables us to describe the congru-
ence transformations on the Cayley–Klein model and to implement algorithms
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with geometric background—such as the Nelder–Mead method—in this model
[7, 8, 9, 10, 11, 12, 23].

The discrete Laguerre system defined on the torus is widely used in control
theory, and can be obtained by the composition of the power functions and the
Blaschke functions [1, 2, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21]. With a similar
technique, starting from the Zernike functions and considering the congruence
transformations on the Poincaré or Cayley–Klein models, we can construct
more general complete orthonormal systems on the disk.

2. The Blaschke group and hyperbolic geometry

Let C denote the set of complex numbers, D := { z ∈ C : |z| < 1 } the disk,
D := { z ∈ C : |z| ≤ 1 } the closed disk and T := { z ∈ C : |z| = 1 } the torus.
The Blaschke functions, defined as

Ba(z) := εBa(z), Ba(z) :=
z − a

1 − az
(z ∈ D, a = (a, ε) ∈ B := D × T)

are bijections on both of the sets D and T, and the set of functions {Ba : a ∈ B }
is closed under the operations of forming the composition of functions (de-
noted by ◦) and the inverse. It follows that the sets of restricted functions
BT := {Ba|T : a ∈ B } and B := {Ba|D : a ∈ B } both form a group with the
operation ◦. The map a → Ba induces a group denoted by (B, ◦) on the set
of parameters B isomorphic to group (B, ◦). The group B can be considered
as the group of congruence transformations in the Poincaré disk model of the
Bolyai–Lobachevsky hyperbolic geometry [20]. In this model the hyperbolic
lines are the circular segments inside D intersecting T perpendicularly, and the
diameters of the circle. These can be formalized using functions in B. Namely
the set of all hyperbolic lines is given by

L := { �a : a ∈ B } , �a := {Ba(t) : −1 < t < 1 } .
The points �a(−1) := Ba(−1) and �a(1) := Ba(1) ∈ T are called the points at
infinity of the hyperbolic line �a.

The map ρ(a, z) := |Ba(z)| (a, z ∈ D) is a metric on the disk, resulting in
the complete metric space (D, ρ), furthermore

ρ(B(z1), B(z2)) = ρ(z1, z2) (z1, z2 ∈ D, B ∈ B),

supporting the claim that the functions in B correspond to isometric transfor-
mations.
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The lines in the Cayley–Klein model are the straight line segments (in the
Euclidean sense) connecting two points of T inside D. It is known that the map

G(z) :=
2z

1 + |z|2 (z ∈ D)

is a D → D bijection with the set of fixed points T ∪ { 0 }, and its inverse is

G−1(z) =
z

1 +
√

1 − |z|2 (z ∈ D).

The functionGmaps the hyperbolic lines of the Poincaré model (i.e. the circular
arcs intersecting T perpendicularly) onto the hyperbolic lines of the Cayley–
Klein model (i.e. straight line segments connecting points of T). Figure 1
illustrates the map G.

Figure 1. The map G.

The congruence transformations in the Cayley–Klein model can be de-
scribed by the following functions:

(2.1) Ca := G ◦ Ba ◦ G−1 (a ∈ B), C := {Ca : a ∈ B } .

The group (C, ◦) of these functions is isomorphic to group (B, ◦), and maps the
set of lines of the model onto itself.

Considering a unitary representation of group (B, ◦), we may construct new
orthonormal systems based on an existing orthonormal system in L2(D). Let
a− denote the inverse of a ∈ B, and

B′
a(z) :=

1 − |a|2
(1 − az)2

(z ∈ D)
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the derivative of Ba. It is easy to see that

(2.2) 1 − |Ba(z)|2 =
(1 − |z|2)(1 − |a|2)

|1 − az|2 = (1− |z|2) |B′
a(z)| (z ∈ D).

We may assign a function B : R2 → R2 to every function B : D → D of a
complex variable through the map

B(x, y) = (ReB(z), ImB(z)) ∈ R2 (z = x+ iy ∈ D).

If the function B : D → D of a complex variable is differentiable, then the func-
tion B of two real variables is also differentiable and—according to the Cauchy–
Riemann-equations—for the Jacobi determinant of the derivative B′(x, y)

JB(z) := |detB′(x, y)| = |B′(z)|2 (z = x+ iy ∈ D)

holds.

Recall the scalar product on L2(D):

〈f, g〉 := 1

π

∫
D

f(z) g(z) dx dy (z = x+ iy, f, g ∈ L2(D)).

Then the operators Ua : L
2(D) → L2(D) defined as

(2.3) Uaf := B′
a− · f ◦ Ba− (f ∈ L2(D), a ∈ B)

give a unitary representation of the group (B, ◦) [16, 17, 18, 19], i.e.

〈Uaf, Uag〉 = 〈f, g〉 (f, g ∈ L2(D), a ∈ B),

Ua1
(Ua2

f) = Ua1◦a2f (f ∈ L2(D), a1, a2 ∈ B).

Indeed, since the absolute value of the Jacobian determinant of Ba− considered

as Ba− is
∣∣B′

a−(z)
∣∣2 (z ∈ D). Thus by integral transformation we have

〈f, g〉 = 1

π

∫
D

f(z) g(z) dx dy =
1

π

∫
D

f(Ba−(z)) g(Ba−(z)) |B′
a−(z)|2 dx dy =

= 〈Uaf, Uag〉 (f, g ∈ L2(D), a ∈ B),

and according to the definition of Ua and the chain rule

Ua1(Ua2f) = Ua1(B
′
a−
2

· f ◦ Ba−
2
) = B′

a−
1

· B′
a−
2

◦ Ba−
1

· f ◦ Ba−
2

◦ Ba−
1
=

= (Ba−
2

◦ Ba−
1
)′ · f ◦ Ba−

2
◦ Ba−

1
= B′

(a1◦a2)− · f ◦ B(a1◦a2)− =

= Ua1◦a2
f (f ∈ L2(D), a1, a2 ∈ B).
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The weight function

μ(z) :=
1(

1 − |z|2)2 (z ∈ D)

satisfies the invariance equation

(2.4) μ(z) = μ(B(z)) JB(z) (z ∈ D, B ∈ B)

of the group (B, ◦) according to (2.2). This implies that the space L1
μ(D) with

the above μ density function is invariant with respect to the transformations
in B:

(2.5)

∫
D

f(z)μ(z) dx dy =

∫
D

f(B(z))μ(z) dx dy (f ∈ L1
μ(D), B ∈ B).

Indeed, by integral transformation and considering (2.4) we get∫
D

f(z)μ(z) dx dy =

∫
D

f(B(z))μ(B(z)) JB(z) dx dy =

∫
D

f(B(z))μ(z) dx dy.

The power functions hn(z) := zn (z ∈ D, n ∈ N) are orthogonal on the
space L2(D). After polar transformation the scalar product has the form

〈f, g〉 = 1

π

∫ 2π

0

∫ 1

0

f(reiθ) g(reiθ) r dr dθ (f, g ∈ L2(D)),

thus

〈hn, hm〉 = 1

π

∫ 2π

0

∫ 1

0

rn+mei(n−m)ϕ r dr dϕ = 0 (n �= m),

〈hn, hn〉 = 1

n+ 1
(n ∈ N).

It follows that the analogue of the discrete Laguerre system on the disk,

La
n(z) := (Uahn)(z) =

1 − |a|2
(1 − az)2

Bn
a (z) (a = (−a, 1) ∈ B, z ∈ D, n ∈ N)

is orthogonal in L2(D). However this system is not complete. In Section 4 we
construct a complete orthonormal system in this space starting from Zernike
functions.

It follows from the invariance property (2.5) that the maps

(2.6) Vaf := f ◦ Ba− (f ∈ L2
μ(D), a ∈ B)
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form a unitary representation of group B in space L2
μ(D), i.e.∫

D

Vaf(z)Vag(z)μ(z) dx dy =

∫
D

f(z)g(z)μ(z) dx dy,

Va1
(Va2

f) = Va1◦a2
f (f, g ∈ L2

μ(D), a1, a2 ∈ B),

and furthermore for the sequence en(z) := (1 − |z|2)zn (z ∈ D, n ∈ N)∫
D

en(z)em(z)μ(z) dx dy = δnm
1

n+ 1
(m,n ∈ N).

The functions G,G−1 : D → D are not differentiable, but at the same time
the derivatives of the functions G,G−1 : R2 → R2 assigned to them exist at
every point z �= 0, z ∈ D. We will show that the function

(2.7) ν(v) := μ(G−1(v)) JG−1(v) (v ∈ D)

satisfies the invariance equation of group (C, ◦), and therefore

(2.8)

∫
D

g(z) ν(z) dx dy =

∫
D

g(C(z)) ν(z) dx dy (g ∈ L1
ν(D), C ∈ C).

Indeed, starting from C = G ◦ B ◦ G−1 of (2.1) using the chain rule we get

G−1 ◦ C = B ◦ G−1, JG−1 ◦ C · JC = JB ◦ G−1 · JG−1 .

Then writing (2.4) for z = G−1(v) and multiplying both sides with JG−1(v):

μ(G−1(v)) · JG−1(v) = μ(B(G−1(v))) · JB(G−1(v)) · JG−1(v) =

= μ(G−1(C(v))) · JG−1(C(v)) · JC(v).
Thus we have shown that the function ν, indeed, satisfies the equation

ν(v) = ν(C(v)) JC(v) (v ∈ D, C ∈ C).

Considering group (C, ◦) instead of (B, ◦) we may introduce different uni-
tary representations and further orthonormal systems on the disk in a similar
manner.

3. The Nelder–Mead algorithm on the hyperbolic plane

The Nelder–Mead simplex algorithm is an unconstrained non-linear opti-
mization method. It was first published in 1965 by Nelder and Mead and since
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than it has been applied to an enormous amount of optimization problems in
the fields of science and engineering [4, 5, 12, 23]. It is also implemented in the
fminsearch command of numerical computational software such as Matlab.
Although practically simple and reliable, this algorithm has very few mathe-
matically proven convergence properties. Some results—for optimization prob-
lems of only 1 or 2 variables—appeared in 1998, together with a non-convergent
counterexample even for a smooth and convex function [8, 11]. There have
been also attempts to modify the behaviour of the original algorithm to enable
a wider spectrum of provable properties [23].

The method relies on the comparison of the real function values at the
vertices of a non-degenerate simplex in the domain of the function to minimize.
(The domain is usually Rn, now we shall consider D as the hyperbolic plane
in the Poincaré and Cayley–Klein models.) The calculations throughout the
procedure are usually formalized through linear combinations of the vertices
as real vectors, however a pure geometric description is also possible. Below
we give a brief sketch of the algorithm using the geometric approach, omitting
calculation details.

• We may start with an arbitrary (non-degenerate) simplex, with a hyper-
bolic triangle on the hyperbolic plane.

• The simplex is updated iteratively replacing the vertex of the worst func-
tion value with a better vertex in each step.∗

– The reflection of the worst vertex through the centroid of the other
vertices is always calculated, and in some cases the update step is
completed.

– In other cases the operations called expansion, contraction and shrink
are applied. Each of these may be geometrically interpreted as find-
ing reflected points or midpoints of line segments.

• The criteria for terminating the iteration is usually that the function
values have a small enough standard deviation, or we reach a threshold
for the number of steps.

With these steps the simplex ’adapts itself to the local landscape’ (defined by
the function to minimize) and ’contracts on to the final minimum’. Figure 2
presents an example for some steps of this algorithm on the Euclidean plane
optimizing a quadratic function.

∗Several vertices are replaced when the shrink operation is applied.
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Figure 2. The Nelder–Mead algorithm on the Euclidean plane.

In [10] the Nelder–Mead algorithm adapted to the Poincaré disk model of
hyperbolic geometry was presented. Now, applying the maps G and G−1 of
Section 2, we transform the hyperbolic constructions and the algorithm to the
Cayley–Klein model. In our current implementation the constructions rely on
the equivalence of these two models: in order to solve a problem in the Cayley–
Klein model, we transform the problem to the Poincaré disk model, solve the
problem there, and then transform the solution back. The new implementations
(Matlab programs) can be downloaded from

http://numanal.inf.elte.hu/~locsi/hypnm/.

Figure 3 shows some basic elements of hyperbolic geometry, and one can
also examine the Nelder–Mead algorithm operating on the hyperbolic plane
(both models) optimizing a function similar to the Rosenbrock function (see
[10, 12]). The images present equivalent constellations, i.e. equivalent under
the map G. (Not generated by applying the map G to a completed image of
course, but invoking the methods implemented on the appropriate model, after
finding the equivalent initial settings.)

The operation applied in each step of updating the simplex depends on
the locations of the vertices and the function being minimized. There is no
prescribed order of applying reflection, expansion, contraction and shrink. Al-
though in case of special initial conditions, when we start the algorithm in
equivalent ways, the method makes exactly the same steps in the two models—
at least theoretically (numerical errors may occur during practical calculations),
and as in the above illustrations. These special equivalent initial conditions for
the two hyperbolic variants of the algorithm can be written more precisely as:

• Apply the Nelder–Mead algorithm in the Poincaré disk model with initial
simplex (z1, z2, z3) ∈ D3 to minimize function f : D → R.
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Figure 3. Top row: Some basic elements of hyperbolic geometry. The line
fitted on two points, perpendicular lines from the points, and a perpendicular
bisector. Bottom row: The progression of the Nelder–Mead method adapted to
the hyperbolic plane. Left: Poincaré disk model. Right: Cayley–Klein model.

• Apply the Nelder–Mead algorithm in the Cayley–Klein model with initial
simplex (G(z1), G(z2), G(z3)) ∈ D3 to minimize function f ◦G−1 : D → R.

Observe that in both cases the function values at the vertices of the initial
simplex evaluate to f(z1), f(z2) and f(z3).

4. Rational Zernike functions

The Zernike functions form an orthonormal system on the disk D in the
space L2(D). The algebra generated by variables z ∈ D and z ∈ D shall be
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denoted by Z:

Z := span { zmzn : m,n ∈ N } .
It is obvious that Z ⊂ L2(D), and Z is invariant under rotations around
the origin. Furthermore the algebra Z is self-adjoint and separates points of
D, therefore—according to the Stone–Weierstrass theorem—every continuous
function in C(D) may be approximated with arbitrary precision with elements
of Z.

In 1934 Zernike introduced (see [24]) an orthonormal basis in the algebra
Z, the elements of which are called Zernike functions, and are denoted by Y �

n .
Applying the polar transformation z = reiθ, the functions generating Z can be
constructed in the form

zmzn = rn+mei(m−n)θ = r2n+|�|ei�θ (m,n ∈ N, � := m − n ∈ Z).

Applying the Gram–Schmidt orthogonalization procedure in the space L2
r(0, 1)

to the functions

r|�|, r|�|+2, r|�|+4, . . . (0 ≤ r ≤ 1),

we arrive at the orthonormal set of polynomials R
|�|
n (n ∈ N):∫ 1

0

R|�|
n (r)R|�|

m (r) r dr = δnm (n,m ∈ N).

It follows that the system

Y �
n(z) := R|�|

n (r) ei�θ (z = reiθ ∈ D, n ∈ N, � ∈ Z)

exhibits the below orthogonality property using the polar form of the scalar
product of L2(D):

〈
Y �
n , Y

k
m

〉
=

1

π

(∫ 1

0

R|�|
n (r)R|k|

m (r) r dr

)
·
(∫ 2π

0

ei(�−k)θ dθ

)
= 2 · δn,m δ�,k.

From the construction it is clear that Z = span
{
Y �
n : n ∈ N, � ∈ Z

}
, thus

the Zernike functions form a closed system in the space C(D) and a complete
system in the space L2(D). Then applying the unitary transform (2.3), the
systems

Z�,a
n := UaY

�
n (a ∈ B, n ∈ N, � ∈ Z)

are again complete orthonormal systems in L2(D) for every a ∈ B. Similarly in
space L2

μ(D) starting from the orthonormal system

X�
n(z) := (1 − |z|2)Y �

n(z) (z ∈ D, n ∈ N, � ∈ Z)
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and applying the unitary transform (2.6), the resulting system

X�,a
n := VaY

�
n (a ∈ B, n ∈ N, � ∈ Z)

is orthonormal and complete in the same space. The polynomials R
|�|
n can also

be expressed by means of the Jacobi polynomials Pα,β
n (see [15, 22]):

Y �
n(z) = r� P 0,|�|

n (2r2 − 1) ei�θ (r = |z| , θ = arg(z), n ∈ N, � ∈ Z).

Thus the functions Z�,a
n can also be written as

Z�,a
n (z) = B′

a(z) r
� P 0,|�|

n (2r2 − 1) ei�θ

(r = |Ba(z)| , θ = arg(Ba(z)), n ∈ N, � ∈ Z).

This concludes the proof of the following

Theorem 1 (Zernike–Poincaré). For every a ∈ B the sequences of functions
Z�,a
n (n ∈ N, � ∈ Z) and X�,a

n (n ∈ N, � ∈ Z) form a complete orthonormal
system in spaces L2(D) and L2

μ(D) respectively.

We may construct orthonormal systems in space L2
ν(D) in a similar manner.

Namely, the operators

Waf := f ◦ Ca (f ∈ L2
ν(D), a ∈ B)

form a unitary representation of group (C, ◦). The functions

K�
n(z) :=

Y �
n(z)

ν1/2(z)
(z ∈ D, n ∈ N, � ∈ Z)

are orthonormal in space L2
ν(D). Considering the above statements, we arrive

at the following

Theorem 2 (Zernike–Cayley–Klein). For every a ∈ B the sequence of func-
tions K�,a

n := WaK
�
n (n ∈ N, � ∈ Z) forms a complete orthonormal system in

space L2
ν(D).

Figure 4 presents two examples of Zernike functions and their unitary trans-
forms.
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Figure 4. Zernike functions and their unitary transforms as two elements of
orthogonal systems. Top row: Y 0

4 and its transforms. Bottom row: Y 1
5 and

its transforms. Left: original Zernike function. Middle: Poincaré disk model.
Right: Cayley–Klein model.
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[7] Kovács, P. and L. Lócsi, RAIT: the Rational Approximation and In-
terpolation Toolbox for Matlab, with experiments on ECG signals., Int.
J. Adv. in Telecomm. Electrotech. Sig., 1(2–3) (2012), 67–75.

[8] Lagarias, J.C., J.A. Reeds, M.H. Wright and P.E. Wright, Conver-
gence properties of the Nelder–Mead algorithm in low dimensions, SIAM
J. Optim., 9 (1998), 112–147.
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