
Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017) 165–176

AN INEQUALITY AND SOME EQUALITIES FOR

THE MIDRADIUS OF A TETRAHEDRON
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Abstract. An inequality containing the circumradius, midradius, and
inradius of a tetrahedron will be “experimentally analysed” and proved in
two special cases. These refer to the regular triangular pyramid and some
tetrahedra having four equal edges. In particular, equalities (like Euler
triangle formula in the plane) will be proved.

1. Introduction

For tetrahedra with circumradius R and inradius r, Euler’s inequality [9]

R ≥ 3r

holds with equality if and only if the tetrahedron is regular. For the so-called
Crelle’s tetrahedra having a midsphere (tangent to all the six edges), one also
has a midradius ρ. With this the above inequality can be sharpened to

R2 ≥ 3ρ2 and ρ2 ≥ 3r2,

cf. [10]. Therefore it is natural to ask for the infimum of the function

(1.1) f(R, ρ, r) =
R2 − 3ρ2

ρ2 − 3r2
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over Crelle’s tetrahedra. (From upper side it is not bounded, as seen on a
degenerate tetrahedron.) Observe the equivalence

f(R, ρ, r) ≥ γ ⇐⇒ R2 + 3γr2

(3 + γ)ρ2
≥ 1.

Numerical experiments show that inf f ∈ [6, 7), at least we get

min
R2 + 18r2

9ρ2
= 1

for Crelle’s tetrahedra, while the corresponding relation for γ = 7 does not
hold. The next conjecture will be proved in section 3 for two special cases.

Conjecture 1.1. For Crelle’s tetrahedra with circumradius R, midradius ρ,
and inradius r it holds that

(1.2) min
R2 − 3ρ2

ρ2 − 3r2
≡ γ∗ = 6.2145156604...

To prove it in two special cases, we characterize Crelle’s tetrahedra by the
help of four parameters, enabling us an algebraic manipulation with Maple.

2. Generating tetrahedra with a midsphere

The midsphere of a tetrahedron is a sphere tangent to every edge. Since
not all tetrahedra have a midsphere, it is important to give characterizations.
The following is found in [10], (Pi) denote the vertices of the tetrahedron.

Theorem ([10]). P has the tangent sphere of the edge if and only if xi exist
and satisfy aij = xi + xj for 0 ≤ i < j ≤ 3, where PiPj = aij .

Note that this theorem is valid for an existing tetrahedron. However, if only
edge lengths (aij) are given, further information is necessary. Let us introduce
an index-free formalism: denote by a, b, c the side lengths of three edges forming
a (basic) triangle, and by a′, b′, c′ the lengths of opposite edges, meeting in a
common vertex.

To be concrete, we will use – as a main condition – equations

a = y + z, b = x+ z, c = x+ y,

a′ = x+ w, b′ = y + w, c′ = z + w,(2.1)
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in accordance with the theorem cited above, with positive numbers x, y, z, w.

As a supplementary condition we formulate two requirements, the first of
which is motivated by the idea in [8]. Their example

a = b = c = a′ = b′ = 4, c′ = 7

shows that the triangle inequality holding for the four faces is not sufficient
for the six lengths to make up a tetrahedron at all. Their main theorem [8],
Theorem 3.1. asserts that a sextuple {a, b, c, a′, b′, c′} defines a tatrahedron (not
necessarily a Crelle’s one) if and only if the four triangle inequalities hold and
the Cayley-Menger determinant [3] is positive. However, this can be evoked by
any of the following geometrical type requirements:

1. no edge of (a, b, . . . c′) can be too large,

2. no value of (x, y, z, w) can be too small.

Remark 2.1. To make condition one exact, assume we have to determine the
maximum of a′. This is reached when by enlarging a′ with the other five edges
fixed, the tetrahedron becomes degenerate, giving inequality a′ < a′max.

(As a point of interest notice that if for given positive x, y, z, w the Cayley-
Menger determinant with edges (2.1) is negative then always exactly three of
the inequalities a < amax, b < bmax, . . . , c

′ < c′max will be violated, namely
those with sides meeting at a common vertex.)

The next lemma gives the formula for the maximum of a′ by means of the
edge lengths – and subsequently by the generating parameters.

Lemma 2.1. With the above notations we have

a′2 ≤ a′ 2max ≡ p+
√
q

2a2
,

where

p = a2(b2 + c2 + b′2 + c′2 − a2) + (b2 − c2)(b′2 − c′2),

q =
(
(b+ c)2 − a2

)(
a2 − (b − c)2

)(
(b′ + c′)2 − a2

)(
a2 − (b′ − c′)2

)
.

If the tetrahedron has a midsphere – and hence is generated by parameters
x, y, z, w –, then the following equivalent formulae also are valid:

p = (y2−z2)+2(y+z)2
(
x2+w2+(x+w)(y+z)

)−(y−z)2(2x+y+z)(2w+y+z),

q = 256(x+ y + z)xy2z2w(y + z + w).
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Proof. Assume the edge lengths a, b, c, b′, c′ are fixed, and enlarge a′ to get a
plane figure – a quadrilateral – with sides b, c, b′, c′ and diagonals a and a′max.
Calculating the area of this quadrilateral by Bretschneider’s formula [2] on the
one hand, and by Heron’s formula applied to Δ{a, b, c} and Δ{a, b′, c′} on the
other hand, the equality of these areas yields a′max. �
Remark 2.2. As regards condition two, take e.g. the triangle with sides a, b, c,
draw the circles centered at the vertices with radii x, y, z (where x is the radius
of the circle opposite to side a, etc.), and determine the radius w of the Soddy
circle [7]. Then the inequality obtained for w reads w > w. This value of w is
given below – the remaining three formulae are similar.

Lemma 2.2. For a Crelle’s tetrahedron with fixed generating parameters (x, y, z)
the minimal value of w is

w =
xyz

xy + yz + zx+ 2
√

xyz(x+ y + z)
.

Proof. The proof runs as indicated in the above remark. Note that the
quantities {a, b, c} and {x, y, z} are in one-to-one correspondence. �

Figure 2.1 shows an isosceles triangle of sides a = 6, b = c = 5 generated
by x = 2, y = z = 3. The center of the Soddy circle is (0, 8

5 ), its radius is
2
5 .

Figure 2.1. The Soddy circle for x = 2, y = z = 3.

One can employ either of Lemma 2.1 or Lemma 2.2 to guarantee an edge-
touching tetrahedron.
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3. The proof in two special cases

For Crelle’s tetrahedra there is a one-to-one correspondence between the
four generating parameters and the six edge lengths, symbolized as

(x, y, z, w) ⇐⇒
(
a b c
a′ b′ c′

)
.

(Direction ⇒ is trivial, while ⇐ follows by observing that the underlying system
of linear equation has a unique solution.)

To make our task more manageable, we restrict ourselves to problems with
only one free parameter. First consider the possible two parameter-families

(x, x, x, w) ⇐⇒
(
a a a
a′ a′ a′

)
, and (x, x, w,w) ⇐⇒

(
a a c
a a c′

)
.

By homogeneity of (1.1), one of the two parameters can be chosen to be unity,
thus we have in fact cases (1, 1, 1, w) and (x, x, 1, 1) to be examined.

Type 1 : (1, 1, 1, w). It is easy to see that these parameters generate a
regular triangular pyramid (in short: RTP) with a = b = c = 2, while the
family includes the regular tetrahedron for w = 1.

First we report on some interesting numerical experiments. Attempts to
minimize function f for variable w result in the almost optimal arguments(

1, 1, 1,
1

1 +
√
3

)
.

Calculating ratio (1.1) for these values yields

1

1336

(
558 + 2013

√
3 + (42

√
3 + 1602)

√
3 + 2

√
3
)

≈ 6.2145156617...,

a thorough investigation however reveals that this is not the optimum!

Theorem 3.1. For a Crelle’s tetrahedron of type 1 (i.e. for an RTP) with
circumradius R, midradius ρ, and inradius r it holds that

min
w

R2 − 3ρ2

ρ2 − 3r2
= γ∗ = 6.2145156604...

Proof. By means of Maple (1.1) can be factored to be

1

4

(√
3 + 3

√
(w + 2)w

)2
(w2 + 6w + 1)(w − 1)2

8
√
3w(w + 2)w2 + 3w4 − 12w3 − 26w2 + 12w − 1

.
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Removing the singularity at w = 1 yields

f =

(√
3 + 3

√
(w + 2)w

)2
(w2 + 6w + 1) ∗ conj

−4(w2 − 10w + 1)(3w2 + 6w − 1)2
,

where

conj = (−8
√
3w(w + 2)w2 + 3w4 − 12w3 − 26w2 + 12w − 1

is the conjugate of the original denominator. Factoring the derivative of f gives
(among others) a sixth degree polynomial

w6 − 10w5 − 73w4 − 84w3 + 39w2 − 2w + 1

with a positive zero w∗ ≈ 0.366033, which at the same time minimizes the
function f. This value is surprisingly close to 1

1+
√
3

≈ 0.366025. However the

minimum value γ∗ ≈ 6.2145156604 is a very little less than 6.2145156617 . . .
obtained for w = 1

1+
√
3
– a remarkable fact! �

Type 2 : (x, x, 1, 1). The edge lengths become then by (2.1)

(3.1) a = a′ = b = b′ = x+ 1, c = 2x, c′ = 2.

Hence this case is characterized by the fact that two pairs of opposite edges are
of the same length, while the remaining two (opposite) sides may be different.
Curiously, the attributive ‘opposite’ can be omitted.

Lemma 3.2. Crelle’s tetrahedra with four equal edges are type 2 tetrahedra.
Moreover, the remaining two edges are perpendicular skew lines.

Proof. To become four equal edges, we have following possibilities:

α :

(
a a c
a a c′

)
, β :

(
a a c
a b′ a

)
, γ :

(
a a a
a b′ c′

)
.

Solving z + y = x+ z = x+ w = z + w = a as well as solving z + y = x+ z =
= x+ y = x+w = a gives gives x = y = z = w, therefore in cases β and γ the
tetrahedron is necessarily regular. Thus tetrahedra, different from regular, are
found only in family α, which was to be shown. The second assertion follows
by elementary observations. �

Theorem 3.3. For a Crelle’s tetrahedron of type 2 with circumradius R, midra-
dius ρ, and inradius r it holds that

(3.2) min
w

R2 − 3ρ2

ρ2 − 3r2
= 9.
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Proof. The function f to be minimized now assumes

(x2 + 6x+ 1)(x − 1)2
(√

x+ 2 +
√
x(2x+ 1)

)2
8x2

(√
x(x+ 2)(2x+ 1) + x2 − 5x+ 1

) .

The singularity at x = 1 can be removed as well to yield

(x2 + 6x+ 1)
(√

x+ 2 +
√
x(2x+ 1)

)2(
x2 − 5x+ 1 − √

x(x+ 2)(2x+ 1)
)

8(x2 − 10x+ 1)
,

a convex function for x > 0, with global minimum 9 at x = 1. �
Remark 3.1. The formula for the midradius ρ is in this case very simple:
2ρ2 = x, or, using generating parameters (x, x, y, y) instead of (x, x, 1, 1),

(3.3) ρ2 =
xy

2
.

This motivated us to formulate the statement separately, too.

Lemma 3.4. Let A and B be opposite points on sphere S of radius ρ. Assume A
and B are midpoints of the segments A1A2 and B1B2 resp., and these determine
perpendicular skew lines touching S at points A and B. Now, if AA1 ∗ BB1 =
= 2ρ2, then S is the midsphere of tetrahedron A1A2B1B2.

As an illustration for type 2, see Figure 3.1.

Figure 3.1. Type 2 tetrahedron with parameters (x, x, y, y).
Segments A1A2 and B1B2 are perpendicular.

The following geometric interpretation gives another proof for (3.3), avoid-
ing in this way long computations.
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Lemma 3.5. A type 2 tetrahedron is obtained from a (right) truncated square
pyramid (in short: TSP) in the following way. Let ABCDA′B′C ′D′ be a
TSP with base square {A,B,C,D}, top square {A′, B′, C ′, D′}, and slant edges
AA′, BB′, CC ′, DD′.

Then AB′CD′ (and also A′BC ′D) is a type 2 tetrahedron, and (3.3) holds.

Proof. It suffices to show the validity of (3.3). Let the lengths of edges AC
and B′D′ be 2x and 2y resp. Then the four edges AB′, AD′, CB′, CD′ have
lengths x + y. Analyze first the facial trapezoid ABB′A′ with bases of side
lengths

√
2x,

√
2y resp., see Figure 3.2.

Figure 3.2. Isosceles trapezoid: one of the 4 congruent faces of the TSP.

The diagonals and legs are of length x+ y and s = AA′ = BB′, whence the
law of cosines yields

s2 = (x+ y)2 + 2x2 − 2
√
2(x+ y)x cosα,

s2 = (x+ y)2 + 2y2 − 2
√
2(x+ y)y cosα,

giving
s2 = x2 + y2.

On the other hand, consider another trapezoid ACC ′A′ with bases 2x, 2y, legs
s and height 2ρ. (This trapezoid is inside of the TSP and halves it.) Applying
Pythagoras’ theorem for the right triangle APA′, where A′P is the altitude of
the trapezoid gives

s2 = (x − y)2 + 4ρ2.

The last two equations imply 2ρ2 = xy, which was to be proved. �
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4. Identities – as in the plane!

While for triangles Euler’s identity

d2 = R(R − 2r)

is valid with circumradius R, inradius r and distance d between the centers of
the circles, a similar equality formula for tetrahedra does not hold [1]. This
makes the following theorem interesting: the Crelle’s tetrahedra just examined
still satisfy some equality conditions!

Theorem 4.1. For type 1 tetrahedra it holds that

(4.1) d2 = R
(
R −

√
3ρ

)
,

while for type 2 tetrahedra we have

(4.2) d2 =
(√

R2 + ρ2 − ρ
)2 − ρ2.

Here d = |cir − mid| is the distance between the circumcentre and midcentre.

Equality d = 0 holds if and only if R =
√
3ρ, in correspondence with [10].

Proof. (A) Type 1 tetrahedra. Let a (not necessarily equal to 2) be the length
of the side of the regular basic triangle, and h be the height of the tetrahedron.
Denote by s the lengths of the three sides meeting at the apex, i.e. let

s =

√
h2 +

a2

3
.

Take the basic triangle to be horizontal and let its center be the origin. The
third coordinate of the circumcenter and the midcenter are calculated to be

cir =
h2 − a2

3

2h
, mid =

a(3s − 2a)

6h

with a distance

d = |cir − mid| = s(s − a)

2h

between them. The circumradius and midradius become

R =
s2

2h
and ρ =

a(2s − a)

2h
√
3

2h.
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Now we are able to find a relation between R, ρ and d. First we have

R

d
=

s

s − a
, whence s =

aR

R − d
and 2s − a = a

R+ d

R − d
.

Substituting this s (squared) and 2s − a into

R

ρ
=

√
3s2

a(2s − a)

proves the statement for type 1.

(B) Type 2 tetrahedra. With the parametrization in Remark 3.1 we have

R2 =
(x2 + y2)(x2 + 4xy + y2)

8xy
, ρ2 =

xy

2
.

Choosing the origin at point (A+B)/2, lying on the line defined by A and B
(cf. Figure 3.1), we have mid=0 as well as

cir =
y2 − x2

4ρ
, d = |cir − med| = |y2 − x2|

4ρ
,

and hence

d2 =
(x2 + y2)2 − 4x2y2

16ρ2
.

Since 8xy = 16ρ2, all three quantities R, ρ, d only depend on t ≡ x2 + y2. We
get

16ρ2R2 = t(t+ 8ρ2), 16ρ2d2 = t2 − 16ρ4,

whence, by eliminating t, the statement follows. �

Example 4.2. We give now a type 2 tetrahedron with fairly simple data.
Let the generating parameters be (2, 2, 1, 1). The opposite perpendicular edges
are of lengths 4 and 2, while there are four edges of the same length 3. The

circumradius is R =
√
65
4 , the midradius equals just ρ = 1, while the inradius

is r = 2
3 (

√
2 +

√
5). The distance between the circumcentre and midcentre

amounts to d = 3
4 . Since

R2 + ρ2 =
(9
4

)2

,

the validity of (4.2) is easily checked.

Remark 4.1. Interestingly, two further identities are valid for Crelle’s tetra-
hedra of type 1, which however do not hold for tetrahedra of type 2.



An inequality for the midradius 175

Lemma 4.3. For regular triangular pyramids it holds that

(4.3) (cir − inc)2 = (R − r)2 − 4r2,

which is the equality form of the Grace-Danielsson inequality [6], [4] and

(4.4) (mid − inc)2 = ρ ∗ (ρ −
√
3r),

a natural companion of (4.1). Here cir,mid and inc stand for the circum-,
mid-, and the incentre.

Proof. We give the formulae needed. For an RTP with base side a = 2, the
circumradius, midradius and inradius are (as functions of height h):

R =
3h2 + 4

6h
, ρ =

2
(√

3h2 + 4 − √
3
)

3h
, r =

h

1 +
√
3h2 + 1

,

while the circumcenter, midcenter and incenter assume

cir =
3h2 − 4

6h
, mid =

√
9h2 + 12 − 4

3h
, inc =

h

1 +
√
3h2 + 1

.

(Equality r=inc is a consequence of choosing the origin in the centre of the
basic triangle.) Identities (4.3) and (4.4) then immediately follow. �

Problem. Since the minimum of function f in Theorem 3.3 is a natural number
(namely 9), we may ask for an immediate (geometrical) proof of (3.2)!
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