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Abstract. Simultaneous number systems with 2 bases were studied
before in different structures. One way of generalization is using 3 bases
instead of 2. In this paper we consider the ring of integers of the quadratic
field Q[

√
5]. The difficulty is the amount of triplets we have to check to

validate the number system property, so the development of a software
which can check these sets in acceptable times (using parallelization, GPU
computing) was necessary. The existence of simultaneous number systems
with three bases was confirmed by our software for some concrete choices
of bases and digit sets.

1. Introduction

Simultaneous expansions were studied before in different structures: in the
ring of rational integers by Indlekofer, Kátai and Racskó in [1], in the ring
of Gaussian integers by Nagy in [8] and by Kovács in [3],[4], in the ring of
Eisenstein integers by Kovács in [5], of the real numbers by Komornik and
Pethő in [2]. Indlekofer, Kátai and Racskó examined for what N1, N2 will
(−N1,−N2,Ac) be a simultaneous number system, where 2 ≤ N1 < N2 rational
integers and Ac = {0, 1, . . . , N1N2 − 1}.
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Definition 1. The triplet (−N1,−N2,Ac) is called a simultaneous number
system, if there exists dj ∈ Ac (j = 0, 1, . . . , k) for all n1, n2 rational integers
such that

n1 =

k∑
j=0

dj(−N1)
j , n2 =

k∑
j=0

dj(−N2)
j .

The result of Indlekofer, Kátai and Racskó is the following:

Theorem 1. (−N1,−N2,Ac) is a simultaneous number system if and only if
N2 = N1 + 1.

Analogous definition can be formulated for simultaneous number systems
of Gaussian integers:

Definition 2. Let α1 and α2 be Gaussian integers and let A be a proper digit
set. The triplet (α1, α2,A) is called a simultaneous number system, if there
exists dj ∈ A (j = 0, 1, . . . , k) for all z1, z2 ∈ Z[i] such that:

z1 =

k∑
j=0

djα
j
1, z2 =

k∑
j=0

djα
j
2.

It is easy to prove (see [8]) that if (α1, α2,A) is a simultaneous number
system of Gaussian integers, then the difference of the bases is unit, namely
α1 − α2 ∈ {±1,±i}. Also in [8] Nagy proved that the Gaussian integers with
absolute value greater than 14.61 can always serve as base for a simultaneous
number system using a digit set construction based on K-type digit sets. Kovács
proved in [3] that except 43 cases the Gaussian integers can always serve as
base for a simultaneous number system using the dense digit set (a dense digit
set consists of elements with the smallest norm from each congruent class).
Moreover he showed in [4] which Gaussian integers can not serve as a base for
a simultaneous number system for any digit set, and gave proper digit sets for
the capable ones.

A possible way of generalization is considering number systems with 3 bases.

Definition 3. Let Z1, Z2, Z3 ∈ Z[i] and let A be a proper digit set. The
quadrille (Z1, Z2, Z3,A) is called a simultaneous number system, if there exists
dj ∈ A (j = 0, 1, . . . , k) for all b1, b2, b3 ∈ Z[i] such that:

b1 =
k∑

j=0

djZ
j
1 , b2 =

k∑
j=0

djZ
j
2 , b3 =

k∑
j=0

djZ
j
3 .

Unfortunately the necessity condition that the pairwise difference of the
bases must be unit means that there is no simultaneous number system of the
Gaussian integers with 3 bases.
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If we try to solve the equation u1 + 1 = u2 in the ring of integers of a
real quadratic field Q[

√
D], where u1, u2 are units, we get that if it is solvable,

then D ≡ 1 (4), moreover it has solution for D = 5. So our goal was to find
simultaneous number system with 3 bases in the ring of integers of Q[

√
5].

Let I be the ring of integers of Q[
√
5]. Every element of I can be written

in the form a1 + a2ω, where a1, a2 ∈ Z and ω = 1+
√
5

2 , so the elements of I can
be represented by pairs of rational integers. From now on (a1, a2) ∈ Z2 means
the number a1 + a2ω ∈ Q[

√
5], and ||a1 + a2ω|| = a21 + a1a2 − a22.

We examined the cases where the bases are in the following form:

1. (a, b), (a+ 1, b), (a+ 1, b+ 1);

2. (a, b), (a, b+ 1), (a+ 1, b+ 1);

3. (a, b), (a − 1, b), (a − 1, b+ 1);

4. (a, b), (a, b+ 1), (a − 1, b+ 1).

The definition of simultaneous number system with 3 bases in this case is
analogous to the previous one.

We can use the dense digit set, or we can create a proper digit set based on
the K-type digit set similarly to the case of 2 bases:

Let A1,A2 and A3 be K-type digit sets belonging to given Z1, Z2, Z3 ∈ I.
Define A in the following way:

A1,2 :=
⋃

d∈A2

(A1 + dZ1),

A :=
⋃

d∈A1,2

(A3 + dZ3).

A dense digit set consists of elements with the minimal norm from each con-
gruent class. We construct one by checking the elements of I on a spiral start-
ing from 0: (0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1),. . .We
start with A = ∅ and if there is no d ∈ A from the same congruent class as the
examined element e, then we expand A with e.

Example 1. A dense digit set belonging to (−1, 3) is

A =
{
(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1),

(2,−1), (2, 0)
}
.

Let Z1, Z2, Z3 ∈ I and let A be a proper digit set. For all z1, z2, z3 ∈ I
there uniquely exists d ∈ A such that Z1|z1 − d and Z2|z2 − d and Z3|z3 − d.
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Let

J(z1, z2, z3) = J(z1, z2, z3, d) =

(
z1 − d

Z1
,
z2 − d

Z2
,
z3 − d

Z3

)
=

= (J1(z1, d), J2(z2, d), J3(z3, d)) = (J1(z1), J2(z2), J3(z3)).

With the notations Z1 = (z11, z12), z1 = (a1, b1), d = (d1, d2) and J1(z1) =
= (a2, b2) we get that:

a1 + b1
1 +

√
5

2
= d1 + d2

1 +
√
5

2
+

(
a2 + b2

1 +
√
5

2

)
· Z1,

a2 + b2
1 +

√
5

2
=

a1 − d1 + (b1 − d2)
1+

√
5

2

z11 + z12
1+

√
5

2

=

=
(a1 − d1) +

b1−d2

2 + b1−d2

2

√
5

z11 +
z12
2 + z12

2

√
5

· z11 +
z12
2 − z12

2

√
5

z11 +
z12
2 − z12

2

√
5
=

=
(a1 − d1)z11 +

(a1−d1)z12
2 + (b1−d2)z11

2 + (b1−d2)z12
4 − 5 (b1−d2)z12

4

z211 +
z2
12

4 + z11z12 − 5
4z

2
12

+

+
√
5 ·

(b1−d2)z11
2 + (b1−d2)z12

4 − (a1−d1)z12
2 − (b1−d2)z12

4

||Z1|| =

=
(a1 − d1)z11 + (a1 − d1)z12 − (b1 − d2)z12

||Z1|| +

+

√
5 + 1

2
· (b1 − d2)z11 − (a1 − d1)z12

||Z1|| .

Let K be the maximum of the absolute values of the coordinates of the
elements of A (so d1, d2 ∈ [−K,K]). The solutions of the equations

L1 =
(K + L1)|z11| + (K + L1)|z12| + (K + L1)|z12|

|||Z1|||
and

L1 =
(K + L1)|z11| + (K + L1)|z12|

|||Z1|||
are

L11 =
K(|z11| + 2|z12|)

|||Z1||| − |z11| − 2|z12|
and

L12 =
K(|z11| + |z12|)

|||Z1||| − |z11| − |z12|
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respectively, so with the notation M1 = max{L11, L12} and assuming a1, b1 ∈
∈ [−M1,M1] we get that a2, b2 ∈ [−M1,M1] as well and if (z1, z2, z3) is a
periodic element, then the coordinates of z1 are in [−M1,M1]. Similarly we
can calculate M2 and M3 which are upper bounds for the absolute values of
the coordinates of z2 and z3 respectively.

This means that all the periodic elements are in a finite set defined by
M1,M2 and M3. Unfortunately the size of the set for bases with small norm is
already so large that checking its elements feels hopeless with existing programs.
So we developed a new one.

2. Description of the program and the methods used in it

The main problem was quickly finding the digit sequence corresponding
to a number triplet while checking for non-trivial periodic elements. This is
accomplished by the iteration of the previously defined Ji functions. In every
iteration step, the following system of congruences must be solved.

d ≡ z1 (mod Z1),

d ≡ z2 (mod Z2),

d ≡ z3 (mod Z3).

On average, |A|
2 elements from A need to be tried (checking every element of

the digit set until a solution is found), which is too slow for our purposes.
Instead, it is faster to solve the following congruences:

d1 ≡ z1 (mod Z1),

d2 ≡ z2 (mod Z2),

d3 ≡ z3 (mod Z3),

where d1 is an element of a complete residue system modulo Z1, and d2 and d3
belong to complete residue systems modulo Z2 and Z3, respectively. Z1, Z2 and
Z3 are pairwise relative primes, so d1, d2 and d3 determines the single element
of A (d) which solves the previous system of congruences. The cardinality
of a complete residue system modulo Zi is ||Zi||, while the cardinality of A
is |||Z1|| · ||Z2|| · ||Z3|||. This is a significant speed-up in calculations, since

it is sufficient to try on average | ||Z1||
2 | + | ||Z2||

2 | + | ||Z3||
2 | solutions instead of

| ||Z1||·||Z2||·||Z3||
2 |. This process can be further optimized by code generation:

since A and the residue systems modulo the bases do not change during the
calculations, we can pre-compute lookup tables for all values of d1, d2 and d3
using perfect hashing.
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This solution can be applied to all digit set constructions. It has the ad-
vantage of high speed and relatively simple implementation, however for every
change in the bases or the digit set construction the program needs to be re-
compiled. We note that there are other fast methods for this challenge [6].

After we found out that number systems with 3 bases exist we also wanted
to determine whether we can say something about the suitable bases. In this
case we used a probabilistic method: if we check a relatively large amount
of randomly chosen number triplets for every base, we can state whether the
base triplets form a simultaneous number system with high confidence, since
the probability of false results goes down with the amount of number triplets
checked. If a non-trivial periodic element is found, we can say that the base
triplets do not form a number system with the given digit set construction.
If no non-trivial periodic element is found then we assume that we found a
number system.

The method is the same as before, however since the base triplets and digit
sets change for every case and the amount of number triplets that need to be
checked using a base triplet is smaller (only a small, randomly chosen part of
the full set is checked), it is not feasible to recompile the program every time
the base triplets are changed. This means that code generation and lookup-
tables are not suitable, the data structures need to be built dinamically at
runtime. This way, more time is needed for the computations, but this did not
cause problems since the amount of number triplets were smaller compared
to checking a full set for a single base triplet and digit set construction. As
distance increases from the origin, generally the norms of the bases increase
too, which means larger digit sets that need more time to generate and more
memory to store. Soon a state was reached where we could not continue the
computations with the available resources. Fortunately, we could still inspect
enough base triplets for our purposes. This means approximately one thousand
base triplets with K-type digit set and a few hundred with dense digit set. The
mapped area is approximately a square centered on the origin, the base triplets
were generated starting from the origin and progressing outwards in a spiral
path.

If the base triplet and digit set construction is known, we can determine the
maximal and minimal coordinate values that can occur during the iteration of
the Ji functions based on the previously stated estimation for the set of number
triplets to be checked. This is important for assuring the correctness of our
results, since if the machine’s integer type can represent these values then we
can be sure that no under- or overflow occurs during the computation. Of
course, this is only possible if the estimation is applicable for the given base
triplet. If the estimation fails (zero division appears in the formula), we can’t
determine the set of number triplets to be checked, so we can’t verify the
existence of a number system in those cases. Because of this we’ve chosen only
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such base triplets where the estimation is applicable.

Let a = (a1, a2) be an element of the set of number triplets to be checked,
and Ji(a) = (b1, b2). Based on the previously stated estimation, (b1, b2) is also
in the set. From the estimation, it follows that if the absolute values of the
coordinates of the elements of the set are smaller than M ∈ N+ and M is
representable as a machine integer, then the only possible cause for overflow is
the evaluation of Ji. Since

Ji(a) =
a − d

Zi
(d = (d1, d2) ∈ A),

it is sufficient to give an upper bound for values occuring during the subtraction
and the division. Let D be the maximal absolute value of coordinates in A and
B the maximal absolute value of coordinates in the base triplets. Then for the
a − d difference we can say that

−(M +D) ≤ a1 − d1, a2 − d2 ≤ M +D

and for the norms of the bases

−2B2 ≤ ||Zi|| ≤ 2B2

is true. The formula for division is the following:

k

l
=

(k1, k2)

(l1, l2)
=

(
k1l1 + k1l2 − k2l2

||l|| ,
k2l1 − k1l2

||l||
)
.

Using the previous two bounds:

−3(M +D)B ≤ (a1 − d1)zi1 + (a1 − d1)zi2 − (a2 − d2)zi2 ≤ 3(M +D)B

and
−2(M +D)B ≤ (a2 − d2)zi1 − (a1 − d1)zi2 ≤ 2(M +D)B.

This is sufficient, since we know that the result of the division will be an element
of the set of number triplets, so its coordinates are bounded by M . This means
that if ±max{2B2, 3(M + D)B} is representable by machine integers, then
there will be no under- or overflow during the computation.

3. Results

We successfully verified the existence of simultaneous number systems with
3 bases in I, both with dense and K-type digit sets. The base triplets were
selected based on the size of the number set that needed to be checked and
in accordance with the bounds on the smallest and largest numbers occurring
during the computation (in order to avoid erronous results due to integer under-
or overflow). The results are given in Table 1.
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Bases Digit set Checked Runtime Max.
construction triplets value

(−1, 3), (0, 3), (0, 4) dense (1 584 digits) 42 487 515 625 1̃6 hours 864

(−1, 4), (0, 4), (0, 5) dense (7 600 digits) 379 205 945 209 7̃0 hours 2265

(−5, 0), (−4, 0), (−4, 1) K-type (4 400 digits) 24 008 572 809 4̃ hours 1875

(−6, 0), (−5, 0), (−5, 1) K-type (17 100 digits) 31 739 204 025 8̃ hours 2592

(−6, 0), (−6, 1), (−5, 1) K-type (19 836 digits) 412 853 796 369 2̃8 hours 3438

(−5,−1), (−5, 0), (−6, 0) K-type (26 100 digits) 23 315 152 249 7̃ hours 2484

(−6,−1), (−6, 0), (−5, 0) K-type (36 900 digits) 64 650 690 225 2̃7 hours 3078

(6, 0), (5, 0), (5, 1) K-type (26 100 digits) 26 629 344 225 8̃ hours 3556

(5, 0), (6, 0), (6, 1) dense (36 900 digits) 13 509 180 441 6̃ hours 2358

(−6, 0), (−5, 0), (−5, 1) dense (17 100 digits) 9 957 844 521 4̃ hours 2124

(−5, 0), (−6, 0), (−6, 1) K-type (26 100 digits) 60 908 759 209 2̃2 hours 2898

(−6,−1), (−5,−1), (−5, 0) dense (29 725 digits) 34 784 861 049 1̃2 hours 2538

(5, 0), (5, 1), (6, 1) dense (29 725 digits) 34 784 861 049 1̃3 hours 2538

(6, 0), (5, 0), (5, 1) dense (26 100 digits) 9 006 959 025 3̃ hours 2124

(−5,−1), (−5, 0), (−6, 0) dense (26 100 digits) 9 006 959 025 5̃ hours 2124

(6,−1), (6, 0), (5, 0) dense (26 100 digits) 13 198 563 225 7̃ hours 2232

Table 1: Simultaneous number systems with 3 bases in Q[
√
5]. The last col-

umn contains the largest possible (in absolute value) number which can occur
during the calculations. No under- or overflows will occur if this can be rep-
resented by the machine’s integer type (this is not a problem in small cases
like these). Runtimes are not directly proportional with the number of triplets
to be checked. This is caused by different sized digit sets and changes in the
computing environment (hardware).

Regarding the position on the plane of the suitable bases 1000 base-triplets
were checked with K-type digit set and 180 with dense digit set for all four
base-triplet constructions. Generally the size of the digit sets and the amount
of time needed grows with the absolute value of the coordinates of the base
triplets, with more computational resources it will be possible to check more
triplets with larger digit sets. The first bases of the triplets were generated
starting from the origin and progressing outwards in a spiral, and the second
and third bases were determined by the first base using the following schemes:

1. (a, b), (a+ 1, b), (a+ 1, b+ 1);

2. (a, b), (a, b+ 1), (a+ 1, b+ 1);

3. (a, b), (a − 1, b), (a − 1, b+ 1);

4. (a, b), (a, b+ 1), (a − 1, b+ 1).

For every base triplet 10 000 number triplets were checked, the results are
shown on Figure 1 and Figure 2 (the plots only show the position of the first
base for every base triplet, since it uniquely determines the other two bases in
the triplet).
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Figure 1: Simultaneous number system bases with K-type digit set. A grey
lattice point (a, b) in the picture denotes that the bases (a, b), (a + 1, b), (a +
1, b+1) do not form a number system with the K-type digit set. A black lattice
point (a, b) in the picture denotes that the bases (a, b), (a+ 1, b), (a+ 1, b+ 1)
probably form a number system with the K-type digit set. A striped lattice
point (a, b) in the picture denotes that the bases (a, b), (a+ 1, b), (a+ 1, b+ 1)
form a number system with the K-type digit set. Similar picture belongs to
the other 3 base schemes.

Figure 2: Simultaneous number system bases with dense digit set. A grey
lattice point (a, b) in the picture denotes that the bases (a, b), (a + 1, b), (a +
1, b+1) do not form a number system with the dense digit set. A black lattice
point (a, b) in the picture denotes that the bases (a, b), (a+ 1, b), (a+ 1, b+ 1)
probably form a number system with the dense digit set. A striped lattice
point (a, b) in the picture denotes that the bases (a, b), (a+ 1, b), (a+ 1, b+ 1)
form a number system with the dense digit set. Similar picture belongs to the
other 3 base schemes.
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Compared to Figure 3 we can formulate the following:

Conjecture 1. If the norms of the bases are big enough, then they form a
number system both with the K-type and dense digit sets.

Figure 3: The absolute value of ||a + bω|| for (a, b). Darker colour denotes
greater value.
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