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Abstract. Based on a seminal theorem of P. Erdős et al and using the
theory of interval-filling sequences, in this paper we present a generalized
result, which ensures the existence of continuum many different fraction
expansions, for numbers x ∈ (0, L), with digit set {0, 1}.

1. The original theorem, notations

In this short paper we generalize an important theorem presented by P. Erdős,
I. Joó and V. Komornik.

We will use the following notations.

Let β be a base of a system, with the assumption β in (1, 2); so, the set of
usable digits is {0, 1}.

For arbitrary such base β let us focus our attention on fraction expansions
of a number x ∈ [0, L], i.e. expansions in the form

(1.1) x =
ε1
β

+
ε2
β2

+
ε3
β3

+ · · ·
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where for the digits εi ∈ {0, 1} hold. Here L is the largest element in the set
of fractions, its value is 1/(β − 1).

Number 1/β will be denoted by Θ, as usual. Let G be the value of golden
ratio, namely G = (1 +

√
5)/2, and set g = 1/G.

In the paper we will use the greedy/regular (i), the quasi-greedy/quasi-
regular (ii) and the lazy expansions (iii), respectively – see the formal definitions
e.g. in [1], [3] and [7]. These expansions are defined so, that by determining
digits εi-s in (1.1) (i) we always choose the largest possible digit; (ii) we al-
ways choose the largest possible digit but with the assumption that for the
actual sub-sum equality is not allowed (i.e. the sum is infinite); (iii) we always
choose the smallest possible digit so, that the remainder has to be still legally
expanded.

The original result was presented in 1991 (paper [4]), and states exactly as
follows (several historical relations are listed in [6]):

Theorem ([4]/3). If 1 < β < G and 0 < x < L, then number x has 2ℵ0

(continuum many) different (fraction) expansions.

The base-pillar of the proof – similarly as in the similar theorem of P. Erdős,
M. Horváth and I. Joó, which states the same for 1-expansions (see [3], Theo-
rem 1./a)) – is the following observation.

For base G we have 1 = g + g2, thus g = g2 + g3. From this it follows
g = 2g3 + g4 = g3 + 2g4 + g5, . . . , so finally g = g3 + g4 + g5 + . . . (which is
the lazy expansion, as well). If 1 < β < G, then 1 < Θ+Θ2, and so, using the
above mentioned facts we have

(1.2) Θ < Θ3 +Θ4 +Θ5 + . . . ,

and from this it follows, too, that we can find an index m, for which Θ <
< Θ3 + Θ4 + · · · + Θm holds. Using this, we are able to thin out cleverly the
original index-sequence used for the expansion.

Here we present a modified, new, elegant proof of the original theorem
([4]/3) published by V. Komornik in 2011 ([7]).

Proof. (based on [7])

Since we have 0 < x < L, thus

(1.3) 0 < x < Θ+Θ2 +Θ3 + · · · ,

(here on the right-hand side every digit is maximal) and

(1.4) 1 < Θ2 +Θ3 +Θ4 + · · · ,
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where we have exploited, that β < G (for base G the lazy expansion is 1 =
= 0.0(1)∞). Using inequality (1.3) we are able to fix a large number k so, that

(1.5) Θk +Θ2k +Θ3k + · · · ≤ x ≤
∑
k�j

Θj

(the multiples of k are the ”scarce” indices, and on the right-hand side index j
runs through on those positive integers, which are not multiples of k), and

(1.6) 1 ≤ Θ2 +Θ3 + · · · +Θk

holds, too. Since digits ak, a2k, a3k, · · · ∈ {0, 1} can be chosen in continuum
many different ways, the proof will be completed, if we show, that for every
such choice there can be found appropriate digits aj ∈ {0, 1} for indices k � j
so, that

(1.7) x − (akΘ
k + a2kΘ

2k + a3kΘ
3k + · · · ) =

∑
k�j

ajΘ
j

should hold. However, this follows from the theorem of S. Kakeya presented
below, choosing (λi) = (Θj)k�j . The conditions are satisfied, since we have
λn → 0 (and the series is convergent), inequality λn ≤ λn+1 + λn+2 + · · ·
(n = 1, 2, . . . ) follows from (1.6), and

x − (akΘ
k + a2kΘ

2k + a3kΘ
3k + · · · ) ≤ λ1 + λ2 + · · ·

holds because of (1.5).

(So, in (1.7) we are able to supplement the terms with scarce indices left
out with the terms with dense indices so, that we would get an expansion of x,
and the scarce and dense indices are independent from each other.) �

2. Interval-filling sequences

The ”Erdős et. al.”-proof presented above is based on the interval-filling
sequences, and to the construction of the more general results we will use these
sequences. Thus, in the following we present briefly the original definition and
the most important related results.
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Theorem (S. Kakeya, 1914).1 Let (λn) be a sequence of positive real numbers,
such that series

(2.1)

∞∑
n=1

λn = L

is convergent2 with sum L; moreover inequalities

(2.2) λ1 ≥ λ2 ≥ λ3 ≥ · · ·

are fulfilled. Thus, every number x ∈ [0, L] may be written in the form

(2.3) x =
∞∑

n=1

enλn, en ∈ {0, 1}

if and only if

(2.4) λn ≤ λn+1 + λn+2 + · · ·

holds for all n = 1, 2, . . . .

Definition ([2], [5]). A sequence {λi} satisfying conditions (2.1) and (2.2)
above is said to be interval-filling (in [0, L]), if every number x ∈ [0, L] can be
written in the form (2.3).

Example 2.1. Sequence {1/2i} is interval-filling, with L = 1.

The idea of the proof is (the details can be found e.g. in [2]; Z. Daróczy,
A. Járai and I. Kátai) that:

a) If the assertion of the theorem does not hold, then we can find a number
x, which cannot be written in the form (2.3);

b) If the assertion of the theorem holds, then for every x ∈ [0, L] we are
able to construct a generator sequence {ei}.

3. Generalization

To the assertion and proof of the main theorem of this paper, let us fix
several conditions, based on the interval-filling sequences.

1Based on [5].
2From this follows clearly λn → 0.
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Let {λn} be a null-sequence, and for all tail-sum let Lm = λm+1+λm+2+· · ·
(notation). Let us assume that λn < Ln (strict inequality; c.f. (2.4)), and
L = L0 =

∑
i λi < ∞.

Similarly as in Kakeya’s theorem, we will examine expansions of numbers
x ∈ (0, L) based on the λi’s (we can say: ”reciprocal values of base-number-
powers”) i.e. expansions

(3.1) x = ε1λ1 + ε2λ2 + · · ·

where for the digits εi ∈ {0, 1} hold. The usual greedy (regular) and the quasi-
greedy (quasiregular) expansions can be introduced even in this environment,
we omit the details here.

Lemma 3.1. Let be x ∈ (0, L), and let its quasiregular expansion be x =
=

∑∞
n=1 εnλn. Then, in the sequence ε1, ε2, . . . there are infinitely many digits

1 and 0, respectively.

Proof. According to the definition, the quasiregular expansion cannot be finite,
so, the number of digits 1s included in it is clearly infinite.

We claim that this holds even for digits 0s, too.

Let us assume indirectly that in the expansion of x we have εm+1 = εm+2 =
= · · · = 1. Since x < L0, therefore here m ≥ 1 holds. Let us choose m as small
as possible. Then

x = ε1λ1 + ε2λ2 + · · · + εmλm +

∞∑
ν=m+1

λν ,

and the value of the right-hand side sum is Lm (see it above), and εm = 0.
Since here λm < Lm, then

x = ε1λ1 + ε2λ2 + · · · + 1 · λm + (Lm − λm),

where the last term is positive (following the condition above) and smaller than
Lm+1. From this it follows, however, that in the quasiregular expansion of x it
cannot be εm = 0, so, our indirect assumption was wrong. �

Theorem 3.1. Let {λn} be a null-sequence, and let for all tail-sums be
Lm = λm+1 + λm+2 + . . . . Let us assume that

a) λn < Ln, for all n, and

b) λn < Ln+1, if n ≥ N (here N is an arbitrary, fixed positive integer).

Then, for all x ∈ (0, L) we have continuum many different expansions in
form (3.1).
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Proof. Case 1. Let be N = 1, which means that condition b) holds for all
n ≥ 1 (e.g. already λ1 < L2 = λ3+λ4+ · · · ; i.e. λ2 falls out, c.f. with inequality
(1.2) above). Let be x ∈ (0, L). Then we can find a small positive number ξ for
which ξ < x < L− ξ. Let us choose from {i} a sub-index sequence m1,m2, . . .
in the way that

∑
λmi < ξ would hold. Let be R = {m1,m2, . . .}, where

m1 < m2 < · · · (scarce indices), and S = {n | n /∈ R} (dense indices).

Then sequence {λn | n ∈ S} remains interval-filling, since the elimination
of the terms with scarce indices can be replaced from the tail-sum.

Let be κ =
∑

j δjλmj
, where δj ∈ {0, 1}, and δj is an arbitrary sequence of

values 0− 1 (these can be chosen in continuum many different ways). Number
x− κ can be written using the dense indices: x− κ =

∑
ν∈S ενλν , εν ∈ {0, 1}.

Then

x =
∑
ν∈S

ενλν +
∑
j

δjλmj ,

so number x has continuum many different expansions.

Case 2. N > 1.

Let the quasiregular expansion of x be

x =
∞∑
i=1

αiλi =

N∑
i=1

αiλi + ϑ,

where in the sequence αN+1, αN+2, . . . digits 0 and 1 occur infinitely many
times (which follows form the Lemma), so 0 < ϑ < LN = λN+1 + λN+2 + · · ·
(on the right-hand side every coefficient is chosen to be 1).

Let us consider now sequence {λN+1, λN+2, . . . }, and let us apply to it the
scenario of Case 1, i.e. let us make the scarce and dense indices to it. Thus,
besides the continuum many different expansions of a number κN we are able
to construct a legal expansion to the ”remainder” xN − κN , so, finally we get
continuum many different expansions to number xN .

With this, the proof of the theorem is completed. �
We note, that if in Theorem 1 numbers λ1, λ2, . . . are chosen as reciprocal

values of base number powers, then we get exactly the case of the Erdős–Joó–
Komornik theorem, since e.g. for N = 1 rewriting λ1 < L2 = λ3 + λ4 + · · · we
get

Θ < Θ3 +Θ4 + · · · = Θ3

1 − Θ
,

i.e. Θ(1−Θ) < Θ3, from which (1−Θ) < Θ2, so finally 1 < Θ+Θ2. This clearly
holds only if the value of Θ is greater than g, i.e. for 1 < β < G. However, the
result of Theorem 1 can be applied to more general constructions, too.
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