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Imre Kátai (Budapest, Hungary)

Dedicated to the memory of Professor Antal Iványi
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Abstract. Given an arithmetic function f : N → N, let the k-fold iterate
of f be defined by f0(n) = n and fk(n) = f(fk−1(n)) for each integer
k ≥ 1. Let ω(1) = 0 and, for each integer n ≥ 2, let ω(n) stand for the
number of distinct prime factors of n. Here, we examine the distribution
of the functions ω(fk(n)) for various arithmetic functions f .

1. Introduction and notation

Given an arithmetic function f : N → N, let us consider the k-fold iterate
of the function f by setting f0(n) = n and fk(n) = f(fk−1(n)) for each integer
k ≥ 1. Let σ(n) stand for the sum of the positive divisors of n, let φ stand
for the Euler totient function, let ψ(n) stand for the Dedekind function defined

by ψ(n) := n
∏
p|n

(
1 +

1

p

)
and, for each fixed integer � �= 0, let ψ(�)(n) :=

:= n
∏

p|n(p + �). Moreover, let ω(n) stand for the number of distinct prime

factors of the integer n ≥ 2 with ω(1) = 0.
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We denote by p(n) and P (n) the smallest and largest prime factors of n,
respectively. The letters p, q, π,Q, with or without subscript, will stand exclu-
sively for primes. In fact, we let ℘ stand for the set of all primes. On the other
hand, the letters c and C, with or without subscript, will stand for absolute
constants but not necessarily the same at each occurrence. Moreover, we shall
use the abbreviations x1 = log x, x2 = log log x, and so on. Also, given any
real number x ≥ 1, we let Nx = {1, 2, . . . , �x�}. The set M denotes the set of
multiplicative functions, while M∗ stands for the set of strongly multiplicative
functions. Finally, we let

(1.1) Φ(z) :=
1√
2π

z∫
−∞

e−u2/2 du

stand for the standard Gaussian law.

We further set, for each integer k ≥ 0,

ak =
1

(k + 1)!
, bk =

1

k!
√
2k + 1

, and sk(n | x) = ω(n) − akx
k+1
2

bkx
k+1/2
2

.

In [2], we proved the following.

Theorem A. For each k ∈ N and every z ∈ R,

lim
x→∞

1

x
#{n ≤ x : sk(φk(n) | x) < z} = Φ(z).

Let θ ∈ M∗ be defined on primes p by θ(p) = p − 1 and, for each integer
k ≥ 0, consider the strongly additive function τk(n) defined recursively by
τ0(p) = 1 and τk(p) =

∑
q|p−1 τk−1(q) for each integer k ≥ 1.

Our proof of Theorem A was essentially based on the inequalities

ω(θk(n)) ≤ ω(φk(n)) ≤ ω(n) + ω(θ(n)) + · · · + ω(θk(n))

and the fact that ω(θk(n)) can be approximated by τk(n). In fact, Theorem A
was deduced by the following result.

Theorem B. For each k ∈ N and every z ∈ R,

lim
x→∞

1

x
#

{
n ≤ x :

τk(n) − akx
k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).
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Given a non zero integer � such that −� �∈ ℘, let θ(�) ∈ M∗ be defined

on the primes p by θ(�)(p) = p + � and let θ
(�)
k (n) be the k-fold iterate of

θ(�)(n). Moreover, let τ
(�)
k be the strongly additive function defined recursively

on primes p by τ
(�)
0 (p) = 1 and τ

(�)
k (p) =

∑
q|p+� τk−1(q) for each integer k ≥ 1.

Here, we examine how the above theorems can be generalized to the distri-

bution of the functions ω(θ
(�)
k (n)), ω(τ

(�)
k (n)), ω(ψ

(�)
k (n)) and ω(σk(n)).

2. Main results

Theorem 1. For each k ∈ N, � ∈ Z \ {0} such that −� �∈ ℘ and every z ∈ R,

lim
x→∞

1

x
#

{
n ≤ x :

ω(θ
(�)
k (n)) − akx

k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).

Theorem 2. For each k ∈ N, � ∈ Z \ {0} such that −� �∈ ℘ and every z ∈ R,

lim
x→∞

1

x
#

{
n ≤ x :

ω(τ
(�)
k (n)) − akx

k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).

Theorem 3. For each k ∈ N, � ∈ Z \ {0} such that −� �∈ ℘ and every z ∈ R,

lim
x→∞

1

x
#

{
n ≤ x :

ω(ψ
(�)
k (n)) − akx

k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).

Theorem 4. For each k ∈ N and every z ∈ R,

lim
x→∞

1

x
#

{
n ≤ x :

ω(σk(n)) − akx
k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).

3. Preliminary lemmas

Lemma 1. For all integers k ≥ 1 and �, let

δ(x, k, �) :=
∑
p≤x

p≡� (mod k)

1

p
.
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Then, for � = 1 or −1, k ≤ x, and x ≥ 3, we have

δ(x, k, �) ≤ C1x2

φ(k)
,

where C1 > 0 is an absolute constant.

Proof. This is Lemma 2.5 in Bassily, Kátai and Wijsmuller [1]. �

We say that a k+1-tuple of primes (q0, q1, . . . , qk) is a k-chain if qi−1 | qi+1
for i = 1, 2, . . . , k, in which case we write q0 → q1 → · · · → qk. We then have
the following obvious result.

Lemma 2. For any fixed prime q0 and integer k ≥ 1, there exist absolute
constants c1, c2, . . . , ck such that∑

q0→q1
q1≤x

1

q1
≤ c1x2

q0
,

∑
q0→q1→q2

q2≤x

1

q2
≤ c2x

2
2

q0
, . . . ,

∑
q0→q1→···→qk

qk≤x

1

qk
≤ ckx

k
2

q0
.

4. Proof of the Theorems

Using essentially the same techniques as those we used in [2] to establish
Theorems A and B, it is somewhat easy to prove Theorems 1, 2 and 3. However,
Theorem 4 needs more attention. Hence, here we shall provide a detailed proof
of Theorem 4.

The general idea is to write, for all n ≤ x (except possibly for at most o(x)
integers n ≤ x which we can ignore),

(4.1) σk(n) = Ak(n)Bk(n),

where (Ak(n), Bk(n)) = 1, Bk(n) is squarefree and p(Bk(n)) > x2k
2 .

We first consider the cases k = 1 and k = 2.

Let Nx := {1, 2, . . . , �x�}. Let Yx be a function which tends to infinity with
x but slowly enough to satisfy Yx ≤ x5, say.

We then write each positive integer n ≤ x as

(4.2) n = A0(n)B0(n),

where P (A0(n)) ≤ Yx and p(B0(n)) > Yx. Setting

U (0)
x := {n ∈ Nx : A0(n) > Y Yx

x or μ(B0(n)) = 0},
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it is clear #U (0)
x = o(x) as x → ∞. This is why we set

N (1)
x := Nx \ U (0)

x

and from here on we work only with N (1)
x .

In light of (4.2), we then have

(4.3) σ(n) = σ(A0(n))σ(B0(n)).

To each prime number q, we associate the strongly additive function fq defined
on primes p by

fq(p) =

{
k if qk‖p+ 1,
0 if q � p+ 1.

Using this definition of fq, we can write

(4.4) σ(B0(n)) =
∏
q≤x2

2

qfq(B0(n)) ·
∏
q>x2

2
q
γq ‖σ(n)

qγq = s(n) · B1(n),

say.

Observe that, in light of Lemma 1,

(4.5)

∑
n∈N (1)

x

∑
q≤x2

2

(log q)fq(B0(n)) ≤
∑
q≤x2

2

(log q)
∑
qk≤x

∑
qk|p+1

x

p
≤

≤ Cxx2

∑
q≤x2

2
qk≤x

log q

φ(qk)
≤ C1xx2x3

and that, from Lemma 2,∑
n∈N (1)

x

∑
q2|σ(n)

q>x2
2

1 ≤
∑
q>x2

2

∑
p1p2≤x
q→p1
q→p2
p1 �=p2

⌊
x

p1p2

⌋
≤

≤ Cxx2
2

∑
q>x2

2

1

q2
≤ cxx2

2

1

x2
2x3

= c
x

x3
.(4.6)

Hence, letting

U (1)
x = {n ∈ N (1)

x : s(n) > x2x
2
3},

U (2)
x = {n ∈ N (1)

x : q2 | σ(n) for some q > x2
2},

it follows from (4.5) and (4.6) that

#
(
U (1)
x ∪ U (2)

x

)
= o(x) (x → ∞)
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and this why we set

N (2)
x := N (1)

x \
(
U (1)
x ∪ U (2)

x

)
and from here on we work only with N (2)

x .

Now, for n ∈ N (2)
x , in light of (4.3) and (4.4), we may write

(4.7) σ(n) = A1(n)B1(n),

where (A1(n), B1(n)) = 1, A1(n) = σ(A0(n))s(n) and B1(n) is squarefree.

Observe that, for n ∈ N (2)
x , we have

(4.8) ω(A1(n)) ≤ log σ(A0(n)) + log s(n) ≤ x2x3x4,

say. Thus it follows from (4.7) and (4.8) that

(4.9) ω(σ(n)) − ω(B1(n)) = ω(A1(n)) = O(x2x3x4) (n ∈ N (2)
x ).

Now, by the definition of B1(n), we may write that

(4.10) σ(B1(n)) =
∏
q>x2

2
q|B1(n)

(q + 1) = U(n) · V (n),

where
U(n) =

∏
π<x4

2

πfπ(σ(B1(n))), V (n) =
∏

πγπ ‖σ(B1(n))

π≥x4
2

πγπ .

Using Lemma 2, we have∑
n∈N (2)

x

∑
π<x4

2

fπ(σ(B1(n))) log π ≤
∑
π≤x4

2

(log π)
∑

π→p1→p2

fπ(p1)

⌊
x

p2

⌋
≤

≤ c1x
∑
π≤x4

2
π→p1

(log π)
x2

p1
fπ(p1) ≤

≤ c2xx
2
2

∑
π≤x4

2

log π

π
≤ c3xx

2
2x3(4.11)

and ∑
n∈N (2)

x

∑
π2|σ(B1(n))

π>x4
2

1 ≤
∑

π→p1→p2
π→Q1→Q2

p2Q2≤x

x

p2Q2
≤

≤ cx
∑
π>x4

2

x4
2

π2
≤ c

x

x3
.(4.12)
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It follows from (4.11) and (4.12) that by dropping no more than o(x) integers

n ∈ N (2)
x , say belonging to a set U (3)

x of size o(x), we may now work with the

new set N (3)
x := N (2)

x \ U (3)
x . In other words, we may now assume that

U(n) ≤ exp{x2
2x3x5}, V (n) is squarefree and (U(n), V (n)) = 1 (n ∈ N (3)

x ).

Introducing the function

V ∗(n) :=
∏
π>x4

2
π|σ(B1(n))
π�σ(A1(n))

π,

we can now set

A2(n) = σ(A1(n))U(n)
∏
π>x4

2
π|(σ(B1(n)),σ(A1(n)))

π, B2(n) = V ∗(n)

and have

σ2(n) = A2(n)B2(n),

with (A2(n), B2(n)) = 1, B2(n) squarefree (n ∈ N (3)
x ).

From this it follows that

(4.13)
ω(σ2(n)) − ω(B2(n)) =

= ω(A2(n)) ≤ 2 logA1(n) + logU(n) = O(x2
2x3x4).

Continuing in this manner, we then write

σ(B2(N)) =
∏
q≤x6

2

qfq(σ(B2(n))) ·
∏
q>x6

2

qfq(σ(B2(n))) = L(n)T (n),

say, with clearly (L(n), T (n)) = 1. Hence, proceeding as above, we observe
that∑

n≤x

∑
q≤x6

2

fq(σ(B2(n))) log q ≤
∑
q≤x6

2

(log q)
∑

q→p1→p2→p3

fq(p1)

⌊
x

p3

⌋
≤ cxx3

2x3

and that fq(σ(B2(n)) = 1 or 0 for every prime q > x6
2 and therefore that

logL(n) ≤ x3
2x3x4 with the possible exception of some positive integers n

belonging to a set U (3)
x of size at most o(x). Hence, from here on we only need

to consider those integers n ∈ N (4)
x := N (3)

x \ U (3)
x . Therefore, for n ∈ N (4)

x , we
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let

B3(n) =
∏
q>x6

2
q|σ(B2(n))
q�σ(A2(n))

q,

A3(n) = σ(A2(n))L(n)
∏
q>x6

2
q|(σ(B2(n)),σ(A2(n)))

q.

Again, with this set up, we have

σ3(n) = A3(n)B3(n),

with (A3(n), B3(n)) = 1, B3(n) squarefree (n ∈ N (4)
x )

and similarly as before

(4.14) ω(σ3(n))−ω(B3(n)) = ω(A3(n)) ≤ 3 logA2(n)+logL(n) = O(x3
2x3x4).

Pursuing in this matter, one is able to show that for every positive integer
k, we have

σk(n) = Ak(n)Bk(n), with (Ak(n), Bk(n)) = 1 (n ∈ N (k+1)
x )

where

Bk(n) =
∏

π>x2k
2

π|σ(Bk−1(n))

π�σ(Ak−1(n))

π

is squarefree and, as with (4.9), (4.13) and (4.14),

(4.15) ω(σk(n)) − ω(Bk(n)) = ω(Ak(n)) = O(xk
2x3x4).

From estimate (4.15), it follows that ω(σk(n)) will be of the same order
as ω(Bk(n)) and therefore that in order to prove Theorem 4, we only need to
prove the following.

Theorem 4a. For every fixed k ∈ N and real z,

lim
x→∞

1

x
#

{
n ≤ x :

ω(Bk(n)) − akx
k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).
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5. Proof of Theorem 4a

We will be using the same arguments as in [2] along with the same lemmas,
but by modifying the strongly multiplicative functions θ(n) and τk(n) intro-
duced in Section 1, namely by defining them on prime numbers p by θ(p) = p+1
and τ0(p) = 1 and thereafter by τk(p) =

∑
q|p+1 τk−1(q). In the same spirit,

we now define a k-chain as a k + 1-tuple of primes q0, q1, . . . , qk which is such
that qi−1 | qi + 1 for i = 1, 2, . . . , k. A general k-chain is denoted by Qk. On
the other hand, a k-chain with the property that qk | n is denoted by Qk(n),
while Qk(n, q0) denotes those k-chains where q0 is fixed and qk | n.

With these adapted concepts, we can use the same techniques that we
developed in [2] to obtain the following.

Proposition 1. For each k ∈ N and every z ∈ R,

lim
x→∞

1

x
#

{
n ≤ x :

τk(n) − akx
k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).

Then, repeating the same argument that we used in Section 4, we obtain the
following.

Proposition 2. For each k ∈ N and every z ∈ R,

lim
x→∞

1

x
#

{
n ≤ x :

ω(θk(n)) − akx
k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).

Now, letting y = x2
1 and proceeding as in Lemma 5.1 of [1], we have that∑

n≤x

∑
q0≤y

q0|θk(n)

|Qk(n, q0)| ≤ x
∑
q0≤y

∑
q1

· · ·
∑
qk

1

qk
�

� x(Cx2)
k(log log y) � x(Cx2)

kx3),(5.1)

where we made repetitive use of Lemma 2.

Let θ(y) be the strongly multiplicative function defined on primes p by

θ(y)(p) =

{
p+ 1 if p > y,
1 if p ≤ y.

As usual the function θ
(y)
� stands for the �-fold iterate of the function θ(y).
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It follows from (5.1) that

(5.2) 0 ≤ ω(θk(n)) − ω(θ
(y)
k (n)) ≤ xk

2x3x4

for all but at most o(x) integers n ≤ x.

The following result then follows from (5.2).

Proposition 3. For each k ∈ N and every z ∈ R, for y = y(x) = x2
1, we have

lim
x→∞

1

x
#

{
n ≤ x :

ω(θ
(y)
k (n)) − akx

k+1
2

bkx
k+1/2
2

< z

}
= Φ(z).

Now, it is obvious that if n ∈ Nk(x), we have Bj(n) | θj(n) for j =
= 0, 1, . . . , k, from which it follows that

0 ≤ ω(Bj(n)) ≤ ω(θj(n)) (n ∈ Nk(x)).

Setting κ(k)(n) := #{p ∈ ℘ : p | θ(y)k (n) and p � Bk(n)}, it is enough to
prove that

(5.3)
1

x

∑
n∈N (k)

x

κ(k)(n) = o
(
x
k+1/2
2

)
(x → ∞).

Before moving on, we introduce a new concept. Given a k-chain of primes

(q0, q1, . . . , qk), we shall say that q0 is a bad prime if q0 | θ(y)k (n) while q0 � Bk(n),

that q1 is a bad prime if q1 | θ(y)k−1(n) while q1 � Bk−1(n), and so on for the other
primes q2, . . . , qk of the k-chain. Moreover, we will say that Qk(n, q0) is a bad
chain if at least one of the qi’s in q0 → q1 → · · · → qk is a bad prime.

Now, it is obvious that

(5.4) L :=
∑
n≤x

κ(k)(n) ≤
∑
n≤x

∑
q0≥y

Q∗
k(n, q0),

where Q∗
k(n, q0) runs over the bad k-chains. We then have

(5.5) L ≤
k∑

j=0

∑
q0≥y
qj bad

Q∗
k(n, q0) =

k∑
j=0

Tj ,

say, where in Tj , qj stands for the smallest prime which is a bad prime.
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Observe that, by Lemma 2,

(5.6) T0 ≤
∑

q0→···→qk
q0 bad

x

qk
≤ xxk

2

∑
q0 bad

1

q0
.

Since the number of such q0 ≤ x is less than Cxk
2x4, it follows that, if

p1 < p2 < · · · stand for the primes in increasing order,

∑
q0 bad

1

q0
≤

∑
j≤Cxk

2x4

1

pj
� x4.

Using this estimate in (5.6), we obtain that

(5.7) T0 � xxk
2x4.

On the other hand, we have

(5.8) T1 ≤
∑

q0→q1→···→qk
q1 bad

x

qk
≤ xxk−1

2

∑
q0→q1
q1 bad

1

q1
≤ xxk−1

2 ≤
∑
q1≤x
q1 bad

τ1(q1 + 1)

q1
.

Now, it was shown in [1] that

(5.9)
∑
p≤x

τj(p)

p
=

1

j + 1
xj+1
2 +O(xj

2).

Using this estimate with j = 1, we obtain that

∑
q1≤x
q1 bad

τ1(q1 + 1)

q1
=

∑
q1≤x1
q1 bad

τ1(q1 + 1)

q1
+

∑
x1<q1≤x

q1 bad

τ1(q1 + 1)

q1
�

� x2
3 + max

x1<q≤x

τ1(q + 1)

q
· xk−1

2 x4 �

� x2
3 +

1√
x1

xk−1
2 x4.
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More generally, using (5.9), we obtain that

Tj ≤
∑

q0→q1→···→qk
qj bad

x

qk
≤ xxk−1

2

∑
q0→q1→···→qk

qj bad

1

qj
≤

≤ xxk−j
2

∑
qj bad

τj(qj + 1)

qj
≤

≤ xxk−j
2

∑
q≤x1

τj(q + 1)

q
+ xxk−j

2 xj
2x3 max

q>x1

τj(q + 1)

q
≤

≤ xxk−j
2 xj+1

2 + xxk
2x3 ≤

� xxk+1
2 .

It follows that (5.3) holds and consequently that∣∣∣ω(θ(y)k (n)) − ω(σk(n))
∣∣∣ ≤ xk

2x3,

thus completing the proof of Theorem 4a and thereby of Theorem 4 as well.
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